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Graphene subject to a spatially uniform, circularly polarized electric field supports a Floquet spectrum

with properties akin to those of a topological insulator. The transport properties of this system, however,

are complicated by the nonequilibrium occupations of the Floquet states. We address this by considering

transport in a two-terminal ribbon geometry for which the leads have well-defined chemical potentials,

with an irradiated central scattering region. We demonstrate the presence of edge states, which for infinite

mass boundary conditions may be associated with only one of the two valleys. At low frequencies, the

bulk dc conductivity near zero energy is shown to be dominated by a series of states with very narrow

anticrossings, leading to superdiffusive behavior. For very long ribbons, a ballistic regime emerges in

which edge state transport dominates.
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Introduction and key results.—The electronic properties
of graphene are very unusual among two-dimensional
conducting systems, in large part because the low energy
physics is controlled by two Dirac points, which form the
Fermi surface of the system when undoped [1–3]. One of
the very interesting possibilities for this system is that, with
spin-orbit coupling, it may represent the simplest example
of a topological insulator [4–6]. Topological insulators are
systems for which the bulk spectrum is gapped, but which
support robust, gapless edge states. Unfortunately, spin-
orbit coupling in graphene appears to be too weak to allow
observation of this behavior with currently available
samples.

Very recently, theoretical studies have suggested that an
analog of topological-insulating behavior can be induced
in graphene by a time-dependent electric potential [7–12].
The proposal entails exposing graphene to circularly po-
larized electromagnetic radiation of wavelength much
larger than the physical sample size, such that only the
electric field has significant coupling to the electron de-
grees of freedom. The periodic nature of the field neces-
sitates that the quantum states of the electrons are solutions
of a Floquet problem, characterized by a ‘‘quasienergy’’ "�
with allowed values in the interval [�!=2,!=2], where!
is the frequency of the radiation [13]. This same physics
allows one to induce topological-insulating properties in a
variety of systems that are otherwise only ‘‘almost’’ topo-
logical insulators [8]. Because time-reversal symmetry is
explicitly broken in this system, it should support a Hall
effect [7] which, when measured in an appropriate geome-
try, may be quantized [11].

A key challenge one faces in determining transport prop-
erties of this system is the assignment of electron occupa-
tions to the Floquet states. In general, the quasienergies ��
cannot be simply inserted as energies in a Fermi-Dirac

distribution since they are limited to a finite interval of
real values determined by the frequency. In this study, we
assume Fermi-Dirac distributions only for the incoming
waves far in the nonirradiated leads. Thus we assume that
electrons are injected and removed from the system via
highly doped, ideal leads in which any possible effects of
an electric field have been screened out, and that the trans-
port within the (finite) irradiated region is quantum coher-
ent. Our geometry is a direct analog of one studied in
Ref. [14] for the time-independent case, and is illustrated
in Fig. 1. Identical leads are taken to be made of highly
doped graphene. This leads to a vanishing time-averaged
current in the absence of a dc bias, which avoids photovol-
taic (charge pumping) effects.
For an infinite ribbon geometry, the momentum kx along

the ribbon axis is a good quantum number, and one
may compute an effective band structure for the Floquet
eigenvalue "�. Figure 2 illustrates this for several cases.
Figure 2(a) displays the bands closest to " ¼ 0 for a
relatively large frequency, @! ¼ 3t where t is the

FIG. 1 (color online). Schematic diagram of device geometry.
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tight-binding hopping parameter. This result is illustrative
for its relative simplicity, but is only relevant to very small
system sizes for which the electric field may be approxi-
mated as uniform throughout the sample [11]. One may see
two sets of minima or maxima, corresponding to the two
valleys, separated by a gap that does not vanish even as the
system width W becomes very large. This intrinsic gap in
the Floquet spectrum is an analog of that which opens in
the presence of spin-orbit coupling for the static graphene
system [4]. In further analogy to this, a pair of edge states
traverses the gap and connects the two valleys, while (anti)
crossing around kx ¼ 0.

Figures 2(b) and 2(c) illustrate corresponding results for
Floquet spectra of two individual Dirac points subject to
the circulating electric field, corresponding to the two
different valleys, with infinite mass boundary conditions.
In analogy with a topological insulator, one sees that both
valleys develop gaps which do not go away as W becomes
large, but only one supports edge states, so that the number
of states at an edge is unaffected (modulo 2) by the change
of boundary condition, while the details of how these states
disperse are changed. Since the system with its edge state
may be well described qualitatively with just the single
valley illustrated in Fig. 2(b), we focus our attention on this
case for the transport calculations.

Figure 3 illustrates typical results for the conductance of
the system as a function of the scattering region length, L.
At large L one can see the conductance level off to a
constant value, indicating the presence of edge states. For
sufficiently wide samples, this ballistic behavior will be
robust against disorder, since states carrying current in
opposite directions reside on opposite sides of the sample.
The presence of a finite current for large L is in marked
contrast to the behavior in the absence of the radiation, for
which the conductance vanishes [14]. Surprisingly, the
conductance exceeds the unirradiated conductance for all
values of L, in spite of the fact that a gap has opened in the
(Floquet) spectrum of the bulk system [7]. The explanation
of this lies in the fact that Floquet eigenvalues are restricted
to a finite interval, for example �!=2< "� < !=2, so
that energy states outside this interval in the absence of
the periodic potential are folded into it. For fixed ky,

this results in a series of repeated crossings at values of
vFkx � m!, where m are nonzero integers. In a system
without edges (i.e., if one considers periodic boundary
conditions rather than a ribbon) these become avoided
crossings with very small gaps, as we explain below, which
transport current via evanescent states. Remarkably, trans-
port through these states results in superdiffusive behavior,
G� 1=Lb, with b < 1, as is apparent in Fig. 3. This non-
analytic behavior reflects an explosive growth of the decay
length of evanescent states with large jmj, which has the
form

FIG. 2 (color online). (a) Tight-binding Floquet spectrum as a
function of kx for a graphene ribbon oriented in the zigzag
direction, subject to a circularly polarized electric field of
magnitude E0 with eE0a=@! ¼ 0:5, @!=t ¼ 3:0, where a is
the Bravais lattice constant and t the hopping parameter.
(b), (c) Spectra from Dirac equation with infinite mass boundary
conditions, corresponding to two different valleys. Only one
valley carries edge states. Frequency !a=vF ¼ 5, electric field
amplitude E0=@! ¼ 1, ribbon width W ¼ 45a.

FIG. 3 (color online). Conductance vs L for several different
bandwidths: qnmax

W ¼ �nmax, with nmax ¼ 10 (blue asterisks),

15 (lavender open squares), 25 (aqua closed squares). For these
plots, W ¼ 20a, !a=vF ¼ 5, and number of time steps is 13.
Note approximate power law behavior G� L�b with b � 0:65
for L <W. For comparison, results for E0 ¼ 0 displayed as red
crosses, displaying G� 1=L behavior for L <W. Inset:
Illustration of "� vs kx for infinite system with periodic boundary
conditions, showing Floquet copies of spectrum and resulting
avoided crossings for kx � 0.
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�m �
�jmj!

A0

�
2jmj e��jmj

jmj! ; (1)

where A0 ¼ E0=! characterizes the electric field ampli-
tude, assumed to be small, and� is a number of order unity.
As we argue below, the rapid growth of �m with m results
in an anomalously large penetration of the electrons into
the irradiated region.

Transmission through irradiated region.—The wave
functions for Dirac electrons subject to circularly polarized
radiation obey the time-dependent Schrödinger equation
½�i@t þH �� � HF� ¼ 0, where the Hamiltonian of the
system has the form

H ¼ 0 px� ipyþAx� iAy

pxþ ipyþAxþ iAy 0

 !
; (2)

whereA ¼ A0ðcos!t; sin!tÞ, and px;y ¼ �i@x;y. (Note we

have set the FermivelocityvF ¼ 1 in this expression.) Since
H is periodic in time, the solutions will be Floquet states,
which have the form �ðr; tÞ ¼ ei"�t½�Aðr; tÞ;�Bðr; tÞ�T,
with ��ðr; tþ TÞ ¼ ��ðr; tÞ and T ¼ 2�=!. Adopting

infinite mass boundary conditions leads to the conditions
[14] �Aðx; y ¼ 0; tÞ ¼ �Bðx; y ¼ 0; tÞ and �Aðx; y ¼
W; tÞ ¼ ��Bðx; y ¼ W; tÞ. Eigenstates of H which meet
these boundary conditions are

�ðn;sÞ ¼ 1

N s

�
sz� � 1

1� sz

 !
eiqny

þ 1� sz

sz� � 1

 !
e�iqny

�
eikxx�iAyy; (3)

where z¼ðqxþ iqnÞ=q, qx ¼ kx � Ax, qn ¼ ðnþ 1
2Þ�=W,

s ¼ �1, H� ¼ sq�, and N s is a normalization con-
stant. States in the leads of the system are generated by
setting A ¼ 0 in Eq. (3).

Our strategy for finding the Floquet eigenvalues is
to discretize time and expand the Floquet operator HF

in instantaneous eigenstates of the Hamiltonian H .

Writing �ðn;ti;sÞðtÞ � �ðn;sÞðtÞ�ti;t, we may then write

hn1; s1; t1jH ðtÞjn2; s2; t2i ¼ Eðn1;s1Þðt1Þ�n1;n2�s1;s2�t1;t2 .

The Floquet operator can then be written as a matrix of the
form

hn1; s1; t1jHFjn2; s2; t2i
¼ Eðn1;s1Þðt1Þ�t1;t2�n1;n2�s1;s2

� i

2�t
½hn1; s1; t1jn2; s2; t1 ��ti�t2;t1��t

� hn1; s1; t1jn2; s2; t1 þ�ti�t2;t1þ�t�; (4)

whose eigenvalues are the allowed values of "� for an
infinite ribbon. Note that the states are implicitly functions
of kx. Diagonalization of Eq. (4) generates results such as
those depicted in Fig. 2(b). These results were obtained for
0 � n � 30 and 19 time slices.

Turning to the conductance, in the leads there are no
microwaves, so that eigenvalues of HF with A ¼ 0 have

the form " ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ q2n

p þ sinðm!�tÞ=�t � �EnðkxÞ þ
"tm. This implicitly defines an equation for kx, which
depends on the integers n and m. In the scattering region
as well, for a given subband of the Floquet spectrum, we
need to know the values of kx that will give some specified
Floquet eigenvalue "�. This is equivalent to finding the
values of kx where the bands illustrated in Fig. 2(b) cross
some specified horizontal line. Note that if there is no such
crossing for a given band then the corresponding kx is
actually complex, indicating an evanescent state.
In order to match the wave functions in the leads to the

scattering region, we need to know these latter values of kx
for a given Floquet eigenvalue "�. To accomplish this we
multiply the eigenvalue equation by �x to obtain

½ð�i@t � "�Þ�x þ i�zpy� ~c ¼ kx ~c : (5)

This is a non-Hermitian matrix equation which we approxi-
mately solve in a manner analogous to what we did for the
original Floquet equation. Eigenvectors give us the wave
functions in the scattering region, and the eigenvalues kx
that enter into the plane wave part of the wave function
eikxx. A comparison of these solutions to "�ðkxÞ obtained
by diagonalizing HF reveals excellent agreement between
the two calculations.
We now have analytic formulas for the wave func-

tions in the leads, and approximate numerical solutions
for them, represented in a finite basis of the states

�ðn;sÞðyÞeikxðn;m;sÞxþimt, in the scattering region. These
need to be matched at two junctions. To accomplish
this we match the wave functions on discrete points in y,
taking yj ¼ ðjþ 1

2ÞW=ðnmax þ 1Þ, where nmax þ 1 is the

number of transverse states retained, and j 2 f0; . . . ; nmaxg.
This defines a set of linear equations which we solve
numerically, and from which the matrix TLR

qp ðE; Eþ "tnÞ,
representing the time-averaged transmission across the
structure, may be obtained. (Here q, p represent transverse
channels in the left and right leads, respectively, and E is
the energy of an impinging electron from the left.) One
may show that by matching on these particular points one
enforces current conservation in the solution; this is con-
firmed numerically to 1 part in 103. The conductance is
finally given by [15,16]

G ¼ e2

h

X
p;q;n

TLR
qp ðEF; EF þ "tnÞ; (6)

where EF is the Fermi energy in the leads.
Evanescent transmission in irradiated system.—A

prominent result from the calculations of the two-terminal
conductance is an approximate power law behavior
G� L�b when L<W. As b is nonintegral this represents
nonanalytic behavior, and the fact that it emerges well
above the large L value of G suggests it is a result of
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evanescent state transport. This behavior turns out to be
rather natural when one accounts for higher order crossings
at nonzero kx of the Floquet spectrum. In a realistic situ-
ation, for example, if the impinging radiation is in the
microwave regime, @!� 10�3 eV, one will have many
such crossings since the graphene bandwidth (� 10 eV) is
relatively large.

To demonstrate the behavior, we consider a simpler
problem in which there is a half-space of irradiated gra-
phene, and a half-space of highly doped, unirradiated
graphene, joined across x ¼ 0, and we adopt periodic
boundary conditions in the transverse direction so that
there are no edge states. For this situation ky is a good

quantum number. States with zero energy are perfectly
backscattered in this case because there are no propagating
states with zero Floquet eigenvalue. In the steady state
situation there is a charge density tail penetrating the
irradiated graphene, which has an approximate power
law falloff with x.

To see this, we need to know how evanescent wave
functions fall off with x inside the irradiated graphene.
In the limit of vanishing microwave amplitude A0, the
Floquet spectrum will have pairs of states crossing

"� ¼ 0 at kx ¼ �k0m ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm!Þ2 � k2y

q
. The degeneracy

is lifted for nonvanishing A0, which we take to be small
compared to !. The resulting anticrossing will occur at
high order in perturbation theory, since the degeneracy
occurs for states with time dependence expð�im!tÞ,
whereas the perturbation V ¼ A0ð�x cos!tþ �y sin!tÞ
connects states whose frequencies differ by a single unit
of !. Thus the gap that opens at the crossing will be
proportional to ðA0=!Þ2m. Since the inverse gap is
essentially the localization length we wish to compute

this. One approach is to use the resolvent operator ĜðzÞ ¼
ðz� ĤFÞ�1 with ĤF ¼ Ĥ0 þ V̂. Poles of the 2	 2 matrix

~G ¼ hm;�jĜjm;�i hm;�jĜj �m;þi
h�m;þjĜjm;�i h�m;þjĜj �m;þi

 !
; (7)

where s ¼ � indicates a particlelike (þ) or holelike (�)

state, are the eigenvalues of HF. Expanding ~G in powers of

V̂ allows one to define a self-energy, ~G�1 ¼ ~G�1
0 � ~� ¼

z� ~H0 � ~�, with ~H0 ¼ 0 for the states of interest. The
diagonal components of� simply shift the precise location
of the anticrossing on the kx axis and may be ignored. To
lowest nontrivial order, the off diagonal components are
�� ¼ hm;�j�j �m;þi ¼ h�m;þj�jm;�i�, with

�� ¼
�ðkx þ ikyÞA0

2k

�
2m Ym�1

n¼�mþ1

½hn;þjĜð0Þjn;þi

� hn;�jĜð0Þjn;�i�:
(8)

Evaluating the matrix elements and setting z ¼ 0, one finds
j��j ¼ A2m

0 ðm!Þ1�2m
Q

n½ðnmÞ2 � 1��1. In the limit of large

m, the product can be evaluated; noting that ��1
m ¼ 2j��j,

one arrives at the estimate in Eq. (1) with � ¼
4ð1� ln2Þ � 1:227.
To see the connection with power law behavior, one

needs to develop matching conditions at the x ¼ 0 inter-
face with these wave functions. This is a tedious but in
principle straightforward exercise [17], yielding the result
that the contribution to the density from large n has the
time-averaged form

	ðxÞ �X
n

�
A0

!


�
2n
e�x=�n ;

where 
 is of order unity, and depends on ky. The sum may

be estimated by assuming it is dominated by a single term
at large n when x is large; maximization yields

nmax ¼ lnð!xÞ
yþ 2‘n

þ C;

where C is independent of L, ‘n is a correction of
order ln½lnð!xÞ�, and y ¼ �2 lnðA0=!Þ � �. Using this

term to estimate the sum yields the result 	ðxÞ �
ð!xÞ2 lnða=!
Þ=ðyþ2‘nÞ. Since this is a weak function of ky
(through 
), we see that summing over the transverse
modes should result in an approximate power law density
tail. Such a falloff is expected to lead to similar behavior in
the transmission. It is interesting to note that the actual
value of the exponent is relatively insensitive to ! and A0,
since these enter only through logs; this is consistent with
our results, for which the observed power tends to remain
in the interval 0:6< b< 0:75 over a variety of choices
or ! and A0.
We conclude with some speculations about the effects of

disorder. Because of the chiral nature of the edge states, it
is clear that the saturation of conductance at large L should
be present in the system unless the disorder is very strong,
for which states associated with opposite edges may ap-
proach one another and allow backscattering. We also
expect the high-order anticrossings to survive moderate
disorder as an enhancement of the density of states near
zero Floquet eigenvalue; this should lead to an increase in
conductance due to the radiation as discussed above for the
clean case. However, the localization lengths of these states
will presumably be shortened by disorder, which will likely
modify the precise form of the conductance as a function of
L. We leave a detailed study of these effects to future
research.
In summary, two-terminal transport through an undoped

graphene ribbon subject to a circularly rotating electric
field has a conductance that reveals the unusual nature of
the Floquet spectrum of this system. Evanescent transport
through relatively short ribbons is superdiffusive due to a
series of near crossings with very small gaps. At larger
ribbon lengths, transport becomes ballistic, revealing the
presence of edge states which are a hallmark of the topo-
logical nature of the spectrum.
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