
Degenerate Quasicrystal of Hard Triangular Bipyramids

Amir Haji-Akbari,1 Michael Engel,1 and Sharon C. Glotzer1,2,*
1Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

2Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
(Received 27 June 2011; published 15 November 2011)

We report a degenerate quasicrystal in Monte Carlo simulations of hard triangular bipyramids each

composed of two regular tetrahedra sharing a single face. The dodecagonal quasicrystal is similar to that

recently reported for hard tetrahedra [Haji-Akbari et al., Nature (London) 462, 773 (2009)] but degenerate

in the pairing of tetrahedra, and self-assembles at packing fractions above 54%. This notion of degeneracy

differs from the degeneracy of a quasiperiodic random tiling arising through phason flips. Free energy

calculations show that a triclinic crystal is preferred at high packing fractions.
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Hard disks and spheres order into hexagonal and face-
centered cubic crystals, respectively, above a certain pack-
ing fraction. A more complex phase behavior is observed if
the disks or spheres are rigidly bonded into dimers (dumb-
bells) [1–4]. A solid phase, disordered in the orientation of
dimers while ordered on the monomer level, forms if the
distance between monomers within a dimer is roughly the
diameter of a monomer. This equilibrium solid phase can
be alternatively understood as a random pairing of neigh-
boring monomers within the native monomer crystal. The
resulting thermodynamic ensemble of ground states is
degenerate and the structure is therefore called a degener-
ate crystal. As shown by Wojciechowski et al. [1] for hard
disks, the entropy associated with the degeneracy exceeds
the entropy from excluded volume effects, which by itself
is sufficient to drive the crystallization of hard monomers.
Other consequences of the pairing of monomers into
dimers include topological defects [5], a restricted, glassy
dislocation motion [6,7], and unusual elastic properties [8].
Similar degenerate phases have also been observed for
freely joined chains of hard spheres [9,10].

Although degenerate crystals can potentially assemble
from dimers of hard shapes other than disks and spheres,
few examples have been reported. One reason is the com-
petition between degenerate crystals and the liquid crys-
talline phases frequently observed for particles with large
aspect ratios. For example, elongated tetragonal parallele-
pipeds, which for an aspect ratio of 2:1 can be viewed as
dimers of face-sharing cubes, form a degenerate parquet
phase at intermediate densities before transforming into a
smectic liquid crystal that eventually crystallizes [11].
Another simple dimer is the triangular bipyramid (TBP),
which consists of two face-sharing, regular tetrahedra
[Fig. 1(a)]. The TBP is the simplest face-transitive bipyr-
amid and the twelfth of the 92 Johnson solids. The lack of
inversion symmetry of the TBP, however, makes lattice
packings nonoptimal [12], and thus it is potentially more
interesting as a dimer than dimers of spheres and
cubes. Moreover, the recent synthesis of TBP-shaped

nanoparticles and colloids [13–16] makes the investigation
of this building block of practical relevance.
In both of the known ordered phases of hard, regular

tetrahedra, each tetrahedron is in almost-perfect face-to-
face contact with at least one other tetrahedron. The dens-
est known packing of tetrahedra (� ¼ 4000

4671 � 85:63%) is a

parallel arrangement of two dimers (four tetrahedra)—that
is, two TBPs—in a triclinic unit cell to form a dimer crystal
[17,18], which we refer to in the present Letter as the TBP
crystal [Fig. 1(b)]. At lower packing fractions, hard tetra-
hedra assemble into a dodecagonal quasicrystal [19], in
which the tetrahedra form a decorated square-triangle
tiling [20]. Degenerate phases are impossible in the TBP
crystal because the contacts between neighboring tetrahe-
dra in different TBPs are highly imperfect [21], but are
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FIG. 1 (color online). Phases formed by (a) triangular bipyr-
amids (TBPs): (b) TBP crystal, (c) degenerate quasicrystal,
(d) regular quasicrystal approximant, (e) degenerate quasicrystal
approximant. For visualization purposes, we show member
tetrahedra of most TBPs at 30% actual size and connect their
centers with bonds. In (c)–(e), tetrahedra and bonds are colored
according to their orientation projected on the plane.
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possible in the quasicrystal due to the almost-perfect face-
to-face contacts between all neighboring tetrahedra.
Quasicrystals are solids with long-range order but without
periodicity [22]. Originally discovered in metallic alloys
[23], many alloy quasicrystals are now known, and a
handful of quasicrystals have been reported in nonmetallic
systems. Among them are quasicrystals made from spheri-
cal micelles [24], binary nanoparticles [25], and hard
tetrahedra [19].

In this Letter, we investigate the phase behavior of hard
TBPs and report a degenerate quasicrystal. The notion of
degeneracy discussed here should not be confused with the
extensively studied degeneracy associated with random
tiling quasicrystals [26,27] where tiles with unique deco-
ration patterns mix to form random tilings. We instead
report a new type of randomness in the level of decorating
individual tiles, in addition to the degeneracy of the
random tiling.

We use isochoric and isobaric Monte Carlo (MC) simu-
lations to study hard TBPs, which we model as perfect
polyhedra with sharp vertices and edges of unit length �.
Simulations are carried out within periodic boxes with
system sizes ranging from 432 to 8000 particles. Each
isochoric MC cycle comprises one update per particle on
average, which is either a trial translation or a trial rotation
with equal probabilities. An additional box trial move is
included per isobaric cycle. For fluid phases, the box is
resized isotropically only, while for crystals its shape
is also allowed to fluctuate. Free energies are calculated
using thermodynamic integration and a modified Frenkel-
Ladd method [2,28] as described in detail in [21]. Further
details and simulation parameters are given in Ref. [29].

The dodecagonal quasicrystal of TBPs forms spontane-
ously from the equilibrium fluid phase at packing fractions
above 54%. Figure 2(a) depicts a side view of the quasi-
crystal formed in an isobaric simulation of 2624 TBPs at
reduced pressure P� ¼ P�3=kBT ¼ 46 and subsequently
compressed to a packing fraction of 81.34%. TBPs arrange
into layers (white lines), which stack on top of each other
perpendicular to the twelvefold symmetry axis (dark ar-
row). We confirmed that the formation of the quasicrystal
occurs reproducibly in systems with at least a few thousand
particles and does not depend on the shape of the simula-
tion box.

The quasicrystal structure can be best understood by
replacing each bipyramid by its two member tetrahedra.
Figure 2(b) depicts the centroids of tetrahedra within a few
layers of Fig. 2(a). Neighboring tetrahedra are connected
with bonds [30]. Dodecagons in Fig. 2(b) correspond to
rings of twelve member tetrahedra, a structural motif char-
acteristic of the quasicrystal [19]. These rings are further
capped with pentagonal dipyramids (PDs), five tetrahedra
sharing an edge, visible in the figure as pentagons within
dodecagons. Additional member tetrahedra referred to as
interstitials fill the space between the rings. Together,

dodecagons and PDs form motifs whose centers are the
vertices of square and triangle tiles. Their mixing gives
the square-triangle tiling its overall twelvefold symmetry
as observed in the diffraction pattern depicted in Fig. 2(c).
Layering along the twelvefold axis can be seen in Fig. 2(d).
Overall, the arrangement of the member tetrahedra is iden-
tical to that reported in the hard tetrahedron system [19].
To elucidate how the bipyramids are arranged within the

quasicrystal, we compare statistical distributions of intra-
TBP bonds (bonds that connect member tetrahedra within
TBPs) and the set of all bonds in the quasicrystal by
projecting both sets onto the surface of a unit sphere. The
resulting diagrams are referred to as intra-TBP and total
bond order diagrams respectively, and are visualized using
the Mollweide projection with the twelvefold axis pointing
in the vertical direction. Comparing these bond order dia-
grams [Figs. 2(e) and 2(f)], we observe no significant
difference in the distribution of bond directions within
the twelvefold layers. This suggests that the pairing of
tetrahedra in the quasicrystal does not follow a predefined
set of rules and is instead random. However, tetrahedra
tend to pair more strongly within layers than between
neighboring layers, a fact that can be explained by noting
that face-to-face contacts are more perfect within layers.
Motivated by studies of hard sphere dimers [1], we refer to
the TBP quasicrystal as a degenerate quasicrystal (DQC).
The randomness can be seen clearly in Fig. 1(c). It is
surprising that the structural quality of the DQC is uncom-
promised despite the additional geometrical constraints
imposed on the system by pairing tetrahedra into TBPs.
For instance, we find that the maximum packing fraction
achieved by replacing the bipyramids with individual

FIG. 2 (color online). (a) TBPs assemble into a dodecagonal
quasicrystal in isobaric and isochoric Monte Carlo simulations.
(b) The square-triangle tiling obtained by connecting the centers
of twelvefold rings of member tetrahedra. Intra- and inter-TBP
bonds are depicted in black and gray, respectively. (d),(e)
Diffraction patterns with centers of member tetrahedra as scat-
terers calculated (c) perpendicular to and (d) across the layers.
(e) Intra-TBP and (f) total bond order diagrams.
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member tetrahedra and then compressing is statistically
identical to that obtained in simulations of hard tetrahedra.

Approximants are periodic phases that are structurally
similar to the quasicrystal locally [31]. Constructing an
approximant of the TBP quasicrystal involves not only
choosing a periodic tiling and decorating it with tetrahedra,
but also pairing the tetrahedra into bipyramids. We choose
the (3:4:32:4) Archimedean tiling which, in the case of hard
tetrahedra, gives rise to the densest approximant [19].
There is no unique way of pairing tetrahedra into TBPs
even within a single unit cell of the approximant due to
degeneracies associated with rotations of the capping PDs.
In particular, it is not possible to avoid breaking the four-
fold symmetry of the approximant unit cell in the pairing
process. We constructed a regular approximant by retain-
ing as much of the symmetry as possible. Top and bottom
views of the constructed approximant are depicted
in Figs. 3(a) and 3(b) while a unit cell is depicted in
Fig. 3(c) where ring-ring and ring-interstitial connections
are highlighted. We find that the regular approximant can
be compressed to a maximum packing fraction of 83.39%,
a bit less than the maximum packing fraction of 85.03%
achieved for the quasicrystal approximant constructed of
individual tetrahedra [19]. The distinctive difference be-
tween the intra-TBP [Fig. 3(d)] and the total bond order
diagrams [Fig. 3(e)] is a result of this deterministic pairing
[Fig. 1(d)].

By expanding the regular approximant, we find that it
melts at P� � 35 and packing fractions �< 54%. But
before melting, the crystal slowly transforms into a more
loosely packed structure in which tetrahedra are paired at

random into TBPs, just as in the DQC, although their
positions and orientations are unchanged [Fig. 1(e)]. The
resulting structure is therefore degenerate to the
tetrahedron-based approximant and we refer to it as a
degenerate approximant (DA). The angular distribution
of intra-TBP bonds around the fourfold axis [Fig. 3(f)] is
more similar to that of all bonds [Fig. 3(g)] in the degen-
erate approximant than in the case of the regular approx-
imant [Figs. 3(d) and 3(e)], which again suggests random
pairing. We find that the transformation from regular to
degenerate approximant is irreversible on the time scale of
our simulations (� 108 MC cycles). Since the DA can only
be recompressed to a density of 82.88%, which is lower
than the maximum density of the regular approximant, the
DA has to be stabilized by its pairing disorder close to
melting.
To understand how the regular approximant transforms

into the DA, we note [Fig. 2(b)] that the arrangement of the
member tetrahedra can be alternatively understood as a
spanning network of interpenetrating PDs [19]. In the hard
tetrahedron system, PDs can easily rotate around their
principal axes [21]. Such rotations are also essential in
understanding the local rearrangements of bipyramids at
densities below 60%. As shown in Fig. 4(b), TBPs move
very little at � ¼ 60%. Even after 250� 106 MC cycles

FIG. 3 (color online). (a) Top and (b) bottom views of the
regular approximant. The unit cell has 41 triangular bipyramids
and particles are colored according to their environment.
(c) Schematics of the unit cell with connections between neigh-
boring rings and between rings and central interstitials shown
with double arrows. (d),(f) Intra-TBP and (e),(g) total bond order
diagrams for (d),(e) the regular approximant and (f),(g) the
degenerate approximant. In the legends, ‘‘int.’’ stands for
‘‘interstitial.’’

FIG. 4 (color online). The self part of the van Hove correlation
function Gsðr; tÞ measures the particle motion in the approxim-
ant. The separation distance rðtÞ is calculated between centers of
mass of member tetrahedra. (a) Large rearrangements occur at
� ¼ 57%. (b) There is little motion present at � ¼ 60%. The
observed dynamics is similar to that observed in the hard
tetrahedron system [21].
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only a small fraction of TBPs have moved as much as �.
A much faster dynamics occurs at � ¼ 57%. Particles at
or near that density move over discrete distances that
are characteristic of a PD network [Fig. 4(a)]. These
rearrangements change neither the tiling nor its decoration.
Instead, they reshuffle the pairing pattern by a sequence
of PD rotations. After a sufficiently large number of re-
shuffling moves the DA emerges from the regular
approximant.

Next we study the relative thermodynamic stability of
various phases. We first compare the DQC obtained in
simulation and its constructed approximants. As observed
in Fig. 5(a), both the regular and the degenerate approx-
imant are slightly denser than the DQC at all pressures. The

relation GðP�
2Þ �GðP�

1Þ /
RP�

2

P�
1
��1dP� between the free

energy and the equation of state then suggests that the
approximants are thermodynamically preferred over the
DQC at sufficiently high pressures because their Gibbs
free energies increase more slowly with pressure.
Furthermore, the approximants melt at lower pressures
than the quasicrystal, which indicates that they might
even be more stable than the quasicrystal at all pressures.
Nevertheless, the DQC remains the only ordered phase that
forms in our simulations. It is also the only structure we
expect to be observed in experiments of hard nanocolloidal
TBPs since the kinetic process of transforming from the
DQC into the approximant is extremely slow. Considering
the local structural similarity of the DQC and the fluid in
terms of the PD network, the formation of the less stable
DQC and not the approximant in simulation may be an-
other example of Ostwald’s rule [32].

Next, we compare the approximant with the TBP crystal
by calculating the free energy difference between them.

As shown in Fig. 5(b), the approximant has a lower free
energy than the TBP crystal for packing fractions below
79%. A phase transition occurs at P�

c ¼ 356� 50, corre-
sponding to coexistence packing fractions of �c;app ¼
ð79:1� 0:8Þ% and �c;TBP ¼ ð80:7� 0:7Þ%. The thermo-

dynamic stability of the approximant at lower densities can
be attributed to the additional configurational entropy as-
sociated with collective motions of particles. Such motions
are not present in the TBP crystal. Their role in stabilizing
the quasicrystal approximant has been shown for the struc-
turally and dynamically similar system of hard tetrahedra
[21]. The phase diagram of the hard TBP system is de-
picted in Fig. 5(c).
Remarkably, hard TBPs not only prefer a complex

quasicrystal over the simpler TBP crystal at intermediate
packing fractions, but also form it on time scales compa-
rable to that previously observed in the hard tetrahedron
system. This is surprising because, in comparison to
tetrahedra, the motion of the highly anisotropic bipyra-
mids is considerably more constrained. Nevertheless, the
degeneracy of the quasicrystal helps it form easily in
simulation. Random pairing allows TBPs to join existing
seeds of the DQC without forming configurations that are
kinetically trapped due to incorrect pairing. Particle rear-
rangements needed for the formation and growth of the
seed are also feasible due to the local similarity of the
fluid and the quasicrystal [19,33]. Finally, the degeneracy
and the existence of ring-ring and ring-interstitial ‘‘cross-
links’’ adds rigidity to the TBP structures. This means
that the TBP system might be superior over the tetrahe-
dron system in terms of its mechanical properties, just as
for crystals of hard sphere dimers compared to crystals of
their monomers [8].
In conclusion, we have shown that hard triangular

bipyramids form a degenerate dodecagonal quasicrystal.
Our finding is only the second quasicrystal formed with
hard particles, the first reported degenerate quasicrystal,
and one of only a few quasicrystals formed in nonatomistic
systems. Our results suggest that degenerate phases are not
restricted to simple close-packed crystals and might be
common in dimer systems.
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FIG. 5 (color online). (a) Equation of state for the TBP crystal,
the degenerate quasicrystal, the regular and the degenerate
approximants. (b) The free energy difference between the TBP
crystal and the approximant. (c) Equilibrium phases of hard
TBPs.
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