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Perfect screening of all charges characterizes a conductor, a fact embodied in the Stillinger-Lovett sum

rule: namely, the charge-charge correlation or structure factor, SZZðkÞ, varies with momentum transfer

k ! 0 as �2
Dk

2 where the Debye length �D is a universal function,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=�q

2
D

q
, of T and the ion density �,

with a scaled charge qD. For a charge-symmetric hard-sphere electrolyte our grand canonical simulations,

with a new finite-size scaling device, confirm the Stillinger-Lovett rule except, contrary to current theory,

for its failure at criticality. Furthermore, the k4 term in the SZZðkÞ expansion is found to diverge like the

compressibility when T ! Tc at �c.
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A basic feature of an electrical conductor is its ability to
screen perfectly all charges, externally imposed or other-
wise. This basic fact, implicit in the work of Debye and
Hückel [1], is crucial to the structure and thermodynamics
of plasmas and ionic fluids [2,3]. While progress has been
made in understanding phase separation and criticality in
systems dominated by Coulombic interactions [4], signifi-
cant questions remain open. Thus long-range ionic inter-
actions are screened exponentially in a conducting
classical fluid [5] on a scale set, at low densities, by the
Debye length �D. Explicitly, if �� ¼ x�� is the density of
ions of charge q� ¼ z�q (z� ¼ 0;�1;�2; . . . ), overall
density �, at temperature T, one has [1–3]

�2
D ¼ kBT=�q

2
D; q2D ¼ 4��z22q

2; �z22 ¼
X
�

x�z
2
�: (1)

Now one may ask: Do the diverging density fluctuations
that characterize criticality destroy perfect screening near
or at (Tc, �c)? This issue leads directly to the remarkable
Stillinger-Lovett (SL) sum rule [2(a),6] which encapsu-
lates perfect screening in the nature of the ionic pair
correlation functions G��ðr;T; �Þ and derived structure
functions, SZZðkÞ, SNNðkÞ, etc. [2(a),7]. Specifically, the
charge structure factor may be written

SZZðkÞ=�z22 ¼ 0þ S2k
2 � S4k

4 þ . . . ; k ¼ jkj: (2)

The zero term reflects internal screening (or bulk electro-
neutrality) while the second charge-correlation moment S2
obeys the unexpectedly simple universal SL rule

S2ðT; �Þ ¼ �2
DðT; �Þ / T=�; (3)

implying a dielectric function "ðkÞ � �2
D=S4k

2 [2(a)].
Here, we study the validity of this sum rule near criti-

cality for charge-symmetric systems, especially the 1:1
equisized hard-sphere ionic fluid or so-called ‘‘restricted
primitive model’’ (RPM) [2–4]. Previous analytical studies

[3(b),7,8] concluded that the SL sum rule still holds at
criticality. Similarly, the fourth charge-correlation moment
S4ðT; �Þ is expected to remain bounded through the critical
region. Put briefly, symmetry dictates that long-range
charge coupling and diverging density fluctuations do not
mix. This conclusion seems of broad theoretical relevance
for complex systems like liquid crystals, quark-gluon plas-
mas, etc. [9], with competing sources of potentially slow
correlation decay or massless excitations.
Nevertheless, we provide below convincing proof via

extensive computer simulations, entailing crucial finite-
size analyses, that the SL sum rule is, in fact, violated at
criticality for the RPM. We find indeed that Sc2 exceeds
�2
DðTc; �cÞ by about 16% [10]. Furthermore, our data re-

veal that S4ðT; �Þ diverges at criticality in a manner closely
mirroring the compressibility [11]. These findings are in
evident disagreement with available theory for charge-
symmetric models and, although our results are qualita-
tively similar to behavior expected for charge-asymmetric
systems [3(b),7,8], even a semiquantitative understanding
has eluded us.
A technical point of broader interest (illustrated in

Fig. 2 below) concerns extrapolation of data, say gðx;LÞ,
for systems of dimensions L when the limit g1ðxÞ is
continuous except at x ¼ xc where the jump [gc1 �
limg1ðx ! xcÞ] is desired. We find that evaluations at

x� xc � yj=L
1=� for sets fyj ! 0g with allowance for

leading ‘‘corrections to scaling’’ [12] in L prove effective.
Our specific grand canonical Monte Carlo simulations

are for a finely discretized RPM with hard-sphere diame-
ters a� ¼ a at the � ¼ a=a0 ¼ 5 level [4,13], where a0 is
the underlying lattice spacing, so � ! 1 describes the
continuum. For N ¼ Nþ þ N� hard-sphere ions conve-
nient reduced variables are

T� ¼ kBTDa=q2; �� ¼ Na3=V; (4)
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where periodic boundary conditions are imposed on a
cubical box of volume V ¼ L3 and reduced edge length
L� ¼ L=a ¼ 8; . . . ; 18 [12]. The � ¼ 5 critical point is
ðT�

c ; �
�
cÞ ’ ð0:050 69; 0:079Þ [4] slightly higher than the

continuum result (0:0493; 0:075) [13]. As already stressed,
in all cited studies [4,13] thorough examination of finite-
size effects and the employment of verified scaling and
extrapolation techniques has proved essential.

The charge structure factor SZZðkÞwas evaluated at each
selected state point for seven values k ¼ ð�	kminÞ � 0with
kmin ¼ 2�=L� while �	 ¼ 0; 1 (	 ¼ 1; 2; 3). Values for

jkj ¼ ð1; ffiffiffi
2

p
;

ffiffiffi
3

p Þkmin were then obtained by averaging.
Histogram reweighting [14] was important for studying
general state points. For L=�D * 10 the data were readily
fitted to (2) using only two terms. At low densities, how-
ever, the divergence of �D implies strong finite-size effects.
Accordingly, we defined finite-size second and fourth
charge-correlation moments via [15]

S2ðL;T; �Þ � SZZðkminÞ=4sin2ðkmin=2Þ; (5)

S4ðL;T; �Þ � S2ðLÞ
k2min

�
1� SZZð

ffiffiffi
2

p
kminÞ

2SZZðkminÞ
�
: (6)

When L ! 1 (so kmin ! 0) these approach the
desired thermodynamic limits, S2ðT; �Þ and S4ðT; �Þ, re-
spectively [12].

Well above criticality (T � Tc), the simulation data
support the validity of the SL sum rule. Nevertheless, at
low densities where �D=L > 0:1, the convergence of
S2ðL;T; �Þ to �2

DðT; �Þ is slow and a careful finite-size
analysis is needed to convincingly verify the SL rule as,
in fact, we have done [16].

Closer to Tc, the plots in Fig. 1 of the second-moment

charge-correlation length �Z;1ðLÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
S2ðLÞ

p
on the critical

isochore � ¼ �c for L� ¼ 10; � � � ; 18, suggest a further
possibility. For T greater than, say, 1:05Tc the approach

of �Z;1ðLÞ to �D as L increases is rapid and, as expected,

fully in accord with SL. But nearer Tc the convergence
slows markedly and, by contrast, at T� ¼ T�

c , the data
suggest that �Z;1ðL ! 1;Tc; �cÞ might well differ from

the critical Debye length, �c
D ¼ �DðTc; �cÞ.

To support such a surmise, however, a closer look is
imperative. Indeed, a plot of the numerical parameter

XðL;TÞ :¼ ð�Z;1=�DÞ2 ¼ S2ðL;T; �cÞ=�2
DðT; �cÞ; (7)

at the critical point Tc proves nonmonotonic as L increases;
see the open circles in Fig. 2. A priori, one cannot, there-
fore, escape the possibility that XðL;TcÞ ! Xc1 ¼ 1, in
accordance with the SL rule. Conversely, if, as we will
conclude, Xc1 � 1, one needs a more transparent grasp of
the behavior of the data in Fig. 1 for large L.
To that end we recall [4] that two-phase coexistence in a

canonical system of finite size displays an effective critical
temperature, Tcan

c ðLÞ, at which two distinct peaks of the
density distribution merge; this lies above the thermody-
namic Tc. In accord with finite-size scaling theory [12],
one expects, and checks [4], that the difference,

�Tcan
c ðLÞ ¼ Tcan

c ðLÞ � Tc, vanishes as L�1=� with � ’
0:63, where the density correlation length, �NðT; �cÞ, di-
verges as t�� when t � ðT � TcÞ=Tc ! 0. By the same
token, we anticipate that the plots in Fig. 1 will, for large L,
approach �D, the dotted locus, except for a peak of narrow-
ing width, ��Tcan

c ðLÞ, around Tc.
To study this peak and, crucially, to estimate its asymp-

totic height, we have plotted in Fig. 2, XðL;TÞ evaluated
not only at T ¼ Tc but also at other temperatures, TfðLÞ
above but close to Tc on the scale 1=L1=�; specifically we
take tfTc ¼ TfðLÞ � Tc ¼: �TfðLÞ ¼ f�Tcan

c ðLÞ ! 0 as

L ! 1. An examination of Fig. 2 provides, we believe,
strong support for the natural scaling hypothesis

X½L;TfðLÞ	 � Wðx; t
fÞ; x ¼ L=�NðTÞ; (8)
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FIG. 1. Plots of �Z;1ðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
S2ðLÞ

p
vs T� on the critical iso-

chore. The almost linear dotted curve depicts the SL prediction,
�DðT; �cÞ, while the vertical line marks criticality.
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FIG. 2. Plots of XðL;TfÞ ¼ S2ðLÞ=�2
D vs ðL� � l�Þ�
=� (with


=� ’ 0:823 and l� ¼ 3:4) for loci �TfðLÞ=�Tcan
c ðLÞ ¼ f. The

dashed lines are guides to the eye.
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where, as a refinement, we have introduced the
exponent 
 ’ 0:52 that describes the leading correction
to thermodynamic scaling [12]. This exponent is also
reflected in the abscissa in Fig. 2 along with the useful
but asymptotically negligible ‘‘shift’’ l� that allows for
higher-order corrections; the value adopted is based on a
close analysis of �Tcan

c ðLÞ. Extrapolation on L then
yields our conclusion, namely, Xc1 � Wð0; 0Þ ¼ Sc2=�

2
D ¼

1:16� 0:05. This implies, unequivocally, a failure of SL at
and, for finite L, near criticality.

To further test current theories, note that the fourth
charge moment S4ðT; �Þ ¼: �4

Z;2 is known analytically to

approach �4
DðT; �Þ when � ! 0 [3(c)]. At first sight the

high-temperature data (T=Tc ’ 10; 20) in Fig. 3 say other-
wise; but this merely reflects the overwhelming finite-size

effects when �D / ffiffiffiffiffiffiffiffiffi
T=�

p ¼ OðLÞ. For intermediate den-
sities one may call on generalized Debye-Hückel (GDH)
theory [17] which predicts that S4ðT; �Þ changes sign while
decreasing approximately linearly with �; see the solid
plots in Fig. 3. The simulations indeed confirm this pre-
diction although the densities at which S4 vanishes for high
T are some 30%–50% greater: see Fig. 3.

At lower temperatures, T=Tc ’ 2 to 6, on the critical
isochore the simulations again mirror GDH results [16,17].
However, as evident from the inset in Fig. 4, the point
T0=Tc ’ 4:0 at which S4 vanishes before reaching a surpris-
ing but predicted minimum, is about 40% lower than antici-
pated. However, a striking unpredicted feature of Fig. 4 is the
seemingly strong divergence of S4 near Tc as L

� increases
from 8 to 18. Qualitatively, the behavior resembles that seen
previously [4,11] for the compressibility �ðT; �Þ /
SNNðk ¼ 0Þ which for � ¼ �c diverges as t�� with � ’
1:239 [7,18]; but quantitatively further analysis is called for.

As noted above, violation of the SL sum rule at critical-
ity and a divergence of S4 contradict previous conclusions
for charge-symmetric models [3(b),7,8]. In these treat-
ments symmetry prevents charge and density fluctuations
from mixing; consequently the diverging density

correlation length, �N;1, has no effect on the charge corre-

lations. On the other hand, in asymmetric models the
fluctuations do couple resulting in diverging fourth-
moment charge-correlation lengths, as well as violations
of the SL rule at (Tc, �c). Might density and charge
fluctuations mix even for the symmetric RPM?
To examine this possibility it is useful to look at special

models [7] in which density and charge fluctuations can
couple. The charge structure factor, SZZ, then relates to the
density factor, SNN , via [7,16]

SZZðkÞ � S0ZZðkÞ þ 2
’ðkBT=�Þk4a2SNNðkÞ; (9)

where the regular ‘‘background’’ term satisfies

S0ZZðkÞ ¼ �2
Dk

2 � S04k
4 þ � � � ; (10)

with S0c4 <1, while ’ is a ‘‘charge asymmetry’’ [7,16]

or, for present purposes, a de facto mixing parameter. Of
course, ’ ¼ 0 implies the SL rule at T ¼ Tc and the

finiteness of S4 when T ! Tc. If one now invokes the
Ornstein-Zernike approximation at criticality, namely
[18], ScNNðkÞ � Cc=k

2 as k ! 0, one obtains

Sc2=�
2
D ¼ ð�c

Z;1=�
c
DÞ2 ¼ 1þ 2

’CcðkBTca
2=�c2

D �cÞ 
 1:

Thus, the SL rule is violated whenever ’ � 0.

On the other hand, for small k on the critical isochore
above Tc, SNNðk;T; �cÞ approaches the diverging com-
pressibility, �ðTÞ � Cþ=t� [18]. Via (9) this yields�S4 �
2
’C

þ=t�. The suggested divergence of S4 accords with the
data of Fig. 4, but the sense is opposite to that observed for
the RPM. Neglecting this feature of the models [7], we
propose the finite-size trial form

S4
�2
Da

2 � YðT; �;LÞ ¼ Y0ðT; �;LÞ þ �YðT; �;LÞ; (11)

where the background, Y0 ¼ S04=�
2
Da

2, remains bounded

while �YðT; �;L ! 1Þ diverges as t��. Finally, at

FIG. 3. Plots of S4=�
4
D � �4

Z;2ðLÞ=�4
D vs �� for isotherms,

T� ¼ 0:5 and 1.0. The solid curves represent GDH predictions,
while the dotted curves are versions rescaled to fit [16].

FIG. 4. Variation of S4=a
4 ¼ ð�Z;2=aÞ4 with T on the critical

isochore for increasing L�. In the inset, note the GDH prediction
(dashed) and the zero crossings and minima.
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criticality in a finite system, when �N;1ðTc; �c;LÞ ¼ OðLÞ,
standard scaling theory [12] yields the expectation

YcðLÞ � YðTc; �c;LÞ � Y0 þ AYL
2��; (12)

where � ’ 0:036 is the anomalous critical-point decay
exponent [18] while AY is a critical amplitude.

Figure 5 presents a test of this proposal: specifically,
YcðLÞ is compared with the compressibility �cðLÞ at criti-
cality which obeys a similar form. Evidently, the fits for
both quantities are quite satisfactory and yield a back-
ground Y0 close to the (L-independent) value derived
from GDH theory. In short, the data indicate a mixing
of charge and density fluctuations. Thus, the critical-point
decay of the density fluctuations [11,18] as 1=r1þ� (�<1)
accords with a theorem [19] linking the failure of the SL
rule to the presence of particle correlation decays slower
than 1=r5 and, via (9), implies that the charge correlations
at criticality decay more rapidly as 1=r5þ�.

In summary, we have asked if a charge-symmetric ionic
conductor will, even at criticality, still screen charges
perfectly in accordance with the Stillinger-Lovett sum
rule Eq. (3). Our answer, based on grand canonical
Monte Carlo simulations of the hard-sphere 1:1 or RPM
electrolyte, is ‘‘No.’’ Away from criticality the sum rule for
the second moment S2 is confirmed, but a special finite-
size scaling analysis reveals a 16% violation at criticality
with S2=�

2
D > 1.

On the other hand, the fourth charge moment S4 � �4
Z;2

displays changes of sign and minima as predicted by GDH
theory [17] but, unexpectedly, diverges at criticality in a
fashion matching the compressibility. Our findings contra-
dict all present theoretical treatments although the ob-
served behavior somewhat resembles expectations for
charge-asymmetric systems. Thus despite the symmetry,
charge and density fluctuations become coupled even for
the simplest model, resulting effectively in a diverging
charge-correlation length near criticality. We believe that
such failures of symmetry restrictions might well feature in

other complex systems with competing interactions. Be
that as it may, previous theoretical analyses need to be
revised or augmented to successfully describe the break-
down of perfect screening in charge-symmetric—and, by
extension, in near-symmetric—ionic fluids.
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