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We report on the experimental verification of quantum non-Gaussian character of a heralded single-

photon state with a positive Wigner function. We unambiguously demonstrate that the generated state

cannot be expressed as a mixture of Gaussian states. Sufficient information to witness the quantum non-

Gaussian character is obtained from a standard photon anticorrelation measurement.
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The quantum properties of light are exemplified by
statistical behaviors which do not admit an explanation
based on semiclassical theory. Since coherent states repre-
sent the quantum analogue of classical coherent light, a
state that cannot be expressed as a convex mixture of
coherent states is commonly considered to be nonclassical
[1]. In particular, during recent decades nonclassical
squeezed states of light have become a crucial resource
for quantum optics, metrology, and quantum information
processing [2,3].

Pure squeezed coherent states represent extremal points
of a convex set of stochastic mixtures of Gaussian states.
All such states possess a positive Wigner function and can
be obtained from coherent laser beams using classical
mixing and quantum interactions described by quadratic
Hamiltonians. Exploiting higher-order nonlinearities in-
volved in the photon detection process, states with negative
Wigner functions can be conditionally generated from the
squeezed states [4–8]. The Wigner functions of these
highly nonclassical states exhibit a distinctly non-
Gaussian shape. More generally, we can introduce the
concept of a quantum non-Gaussian character: we say
that a state exhibits a quantum non-Gaussian character if
it cannot be expressed as a mixture of Gaussian states.
Higher-order nonlinearities are required for preparation of
such states even if they exhibit positive Wigner functions.

The famous Hudson theorem establishes an equivalence
between the (quantum) non-Gaussian character and the
negativity of the Wigner function for pure states [9].
However, this relation does not simply extend to mixed
states [10]. Previous approaches towards the non-Gaussian
character witness or measure for mixed states do not dis-
tinguish the non-Gaussian character which is compatible
with a simple mixture of Gaussian states, and they also
require complete information about the quantum state
[11–13]. This brings a very basic and fundamental physical
problem to our attention: Which mixed nonclassical quan-
tum states with positive non-Gaussian Wigner functions do
not admit explanation based solely on a stochastic non-
Gaussian character? Very recently, a directly measurable
witness of the quantum non-Gaussian character has been
theoretically proposed [14]. The witness is based on

knowledge of probabilities of vacuum and single-photon
states only, yet it can detect a wide class of states with
positive Wigner functions which are not mixtures of
Gaussian states.
A heralded single-photon source is an excellent example

for testing the power of this witness in a laboratory. In the
absence of background noise, the generated state would be
a mixture of a single-photon state and a vacuum due to
losses, imperfect coupling and mode matching. If the
probability of a vacuum dominates, then the state exhibits
a positive Wigner function. Nevertheless, the witness [14]
still proves that it is not a mixture of Gaussian states. Here
we apply the witness to approximate single-photon states
conditionally generated by detection of an idler photon
from a photon pair produced by the process of spontaneous
parametric frequency down conversion (PDC). Our detec-
tion scheme consisting of a beam splitter and two single-
photon detectors is the one commonly employed to test the
anticorrelation properties of single-photon sources [15].
This measurement allows us to obtain suitable estimates
of vacuum and single-photon probabilities, which are re-
quired for the non-Gaussian character witness. The verifi-
cation of the quantum non-Gaussian character thus
conveniently complements other typically performed non-
classicality tests of single-photon sources.
Theory.—LetG denote the set of all mixtures of Gaussian

states. We would like to show that a given state � cannot be
expressed as a convex mixture of Gaussian states, � =2 G,
even though � possesses a positive Wigner function. This
can be accomplished using a criterion recently derived in
Ref. [14]. This criterion is based on photon-number proba-
bilities and can be expressed as an upper bound on a single-
photon probability p1 for a given vacuum-state probability
p0. If the measured p1 exceeds this bound, then � =2 G. The
bound can be derived by maximizing p1 for a fixed p0 over
all pure Gaussian states [14] and can be conveniently ex-
pressed in a parametric form,

p0 ¼ e�d2½1�tanhðrÞ�

coshðrÞ ; p1 ¼ d2e�d2½1�tanhðrÞ�

cosh3ðrÞ : (1)

Here r � 0 is the squeezing constant and the displacement
reads d2 ¼ ðe4r � 1Þ=4. All probability pairs (p0; p1)
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achievable by mixtures of Gaussian states form a convex set
that is shown in Fig. 1(a) as an area labeledG. Note that the
boundary of this area is specified by the formula (1).

In analogy with entanglement witnesses [16], we can
define a non-Gaussian character witness [14],

WðaÞ ¼ ap0 þ p1: (2)

If WðaÞ>WGðaÞ then � =2 G. The bound WGðaÞ ¼
max�2GWðaÞ can be obtained by inserting p0 and p1 given

by Eq. (1) into Eq. (2) and maximizing the resulting
expression over r. This yields the extremal equation ð1þ
e2rÞa ¼ e2rð3� e2rÞ whose solution provides optimal r
for any given a. As indicated by a green dashed line in
Fig. 1(a), each line ap0 þ p1 ¼ WGðaÞ is a tangent to the
boundary curve (1) and divides the plane into two half
planes. All points (p0; p1) lying in the half-plane ap0 þ
p1 >WGðaÞ are certified by the witness to correspond to a
state � =2 G.

Let us now consider practical determination of the prob-
abilities p0 and p1. Since the currently commonly avail-
able avalanche photodiodes (APDs) are not capable of
resolving the number of photons, one needs to employ an
advanced photon-number resolving detector [17–19] with
demanding operation conditions or some sort of multi-
plexed detector [20–27]. Perhaps the conceptually simplest
scheme, shown in Fig. 1(b), is based on splitting the
incoming signal on a balanced beam splitter (BS) and
placing an APD on each output port of the BS. This setup

is commonly used for measurement of the gð2Þ factor
[15,28,29].

Although this scheme provides some information about
photon statistics there are several factors that need to be
carefully considered. One important issue is the detector
efficiency and other losses which combine to overall

efficiency �. Compensation of � would require its precise
calibration, which is a nontrivial task. However, we can
simply include losses into state preparation. Let L� denote

a lossy channel with transmittance �. This channel maps
Gaussian states onto Gaussian states. Therefore, if � 2 G
then also �� � L�½�� 2 G. This implies that if �� =2 G
then also � =2 G. We can thus conservatively assume per-
fect detectors with unit efficiency and if �� =2 G is proven

under this assumption, then it certainly holds also for �
irrespective of the exact value of �.
In the experiment, the number of single detector clicks

(R1A and R1B) as well as the number of coincidence clicks
(R2) is measured for a given number of samples R0 of the
state. Assuming perfect detectors with � ¼ 1 the vacuum-
state fraction p0 is the probability that none of the detectors
clicks,

p0 ¼ 1� R1A þ R1B þ R2

R0

: (3)

The determination of p1 is less trivial. We have

R1A

R0
¼ X1

n¼1

Tnpn;
R1B

R0

¼ X1

n¼1

ð1� TÞnpn; (4)

where T denotes the effective transmittance of the BS that
also includes possible imbalance of the detection efficien-
cies and other factors. Note that R1A and R1B depend on the
whole photon-number distribution pn, not just on p0 and
p1. We can nevertheless construct the following estimator,

p1;est ¼ R1A þ R1B

R0

� T2 þ ð1� TÞ2
2Tð1� TÞ

R2

R0

: (5)

With the help of Eqs. (3) and (4) one can show that

p1;est ¼ p1 �
X1

n¼3

pn

T2 � Tn þ ð1� TÞ2 � ð1� TÞn
2Tð1� TÞ ;

hence p1;est � p1. Note that the term proportional to p2 is

absent in p1;est, so for rapidly decaying distributions the

error is of the order of p3. With this lower bound on p1 at
hand, the above criterion is still applicable, because ap0 þ
p1;est >WGðaÞ implies that ap0 þ p1 >WGðaÞ as well.
The estimation of p1 is influenced by the effective

imbalance of the detection channels T: ð1� TÞ. Without
loss of generality, we can assume that T > 1

2 . It follows

from Eq. (5) that p1;est decreases with increasing ratio

T: ð1� TÞ. Hence we should avoid underestimation of T
which would result in overestimation of p1. An upper
bound on T is provided by the ratio of single detector
clicks,

Test ¼ R1A

R1A þ R1B

: (6)

It can be shown that T � Test for T � 1
2 . We can thus safely

use Test as a conservative estimate of T.

FIG. 1 (color online). (a) Inferring non-Gaussian character
from photon-number probabilities p0 and p1 of vacuum and
single-photon states. The region of physically allowed points
(p0; p1) is formed by a triangle p0 þ p1 � 1, pj � 0. The

convex region G represents probability pairs achievable by
mixtures of Gaussian states. The points lying in the light gray
region indicate states that cannot be expressed as convex mix-
tures of Gaussian states. The green dashed line represents one of
the non-Gaussian character witnesses WðaÞ. (b) Detection
scheme. Signal light beam impinges on a beam splitter (BS)
and the outputs are detected by two APDs. Both single and
coincidence rates are acquired by coincidence logic (CL).
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Multimode witness.—Many single-photon sources do
not emit photons strictly into a single spatial and temporal
mode. Let us briefly sketch a proof [30] of the applicability
of the witness to a generic multimode case. Let N denote
the total number of modes involved, and we define the total
photon-number n ¼ P

N
j¼1 nj, where nj is the number of

photons in jth mode. The estimated probabilities pn then
correspond to the probability of no photon (n ¼ 0) or one
photon in total (n ¼ 1) in the signal beam. Even in this
multimode case, the maximum of WðaÞ ¼ ap0 þ p1 over
all mixtures of Gaussian states is attained by a pure
N-mode Gaussian state. Any N-mode pure Gaussian state
can be prepared by combining N single-mode squeezed
states in a network of beam splitters. Moreover, the passive
linear network described by a unitary matrix UN does not
change the statistics of the total photon-number because

UNnU
y
N ¼ n. It suffices to carry out the optimization over

products of N pure single-mode Gaussian states which can
be done analytically and one can prove that the bound on
WðaÞ remains WGðaÞ for arbitrary N. We can therefore
apply the witness also to multimode states without any
limitation.

Experimental setup.— The experimental setup of a her-
alded single-photon source based on PDC is presented in
Fig. 2. The detection part consists of three binary detectors
(TR, SA, SB). The trigger detector (TR) yields a heralding

output of the single-photon PDC source. When a detection
event is registered at this detector, we expect that an
approximate single-photon state is prepared in signal
mode. The signal is divided by the BS with transmittance
of TBS ¼ 0:522� 0:003 to the detection channels SA and
SB. All single as well as twofold and threefold coincidence
events between channels TR, SA, and SB are registered by
a fast coincidence logic unit. The overall splitting ratio Test

between channels SA and SB has been conservatively
estimated from the measured rates R1A and R1B using Eq.
(6), and it agrees well with the independently measured
TBS and relative detector efficiencies.
The probabilities p0 and p1 are estimated from the

measured data using formulas (3) and (5). Because of
conditioning on clicks of the trigger, R0 is given by the
singles of the trigger detector, R1A and R1B by twofold
coincidences of TR&SA and TR&SB, respectively, while
R2 is actually given by the threefold coincidences. The
coincidence window is set to 2 ns. The results are summa-
rized in Table I for different pump powers P and three
different full width at half maximum of the interference
filter (IF) (2 nm, 10 nm and without filter). Because of
imperfect mode-matching, incoupling losses, and ineffi-
cient detectors, the vacuum term p0 dominates while the
single-photon fraction is below 30% for all data shown.
The contribution of higher photon terms is very small, 1�
p0 � p1 & 10�4, so the generated state is very close to an
attenuated single photon. In the experiment, this is indi-
cated by a very small ratio of threefold to twofold coinci-
dence rates (less than 10�3). For example, for P ¼ 50 mW
and w ¼ 10 nm we have R2 ¼ 605, R1A ¼ 1:259� 106,
and R1B ¼ 1:192� 106 per 100 s. The statistical uncer-
tainty of the estimated p0 and p1 determined assuming
Poissonian statistics is less than 2� 10�4 for all data
shown (1 standard deviation). Because of very low three-
fold coincidences, the sum p0 þ p1 exhibits much lower
statistical uncertainty than the difference p0 � p1.
Results.—We have verified that the generated states

cannot be expressed as a mixture of Gaussian states by
using the non-Gaussian character witness. For each data set
(p0; p1) we have calculated �W ¼ ap0 þ p1 �WGðaÞ
and maximized the difference over all a. The resulting
maximal �W values are listed in Table I. We can see that
�W > 0 in all cases and the bound WGðaÞ is always

FIG. 2 (color online). Layout of the experimental setup.
Continuous-wave frequency-multimode ultraviolet laser with
central wavelength of 407 nm pumps a 2 mm long �-barium
borate (BBO) nonlinear crystal phase matched for type 2 degen-
erate PDC. Collinearly generated photon pairs with central
wavelength of 814 nm are collimated and separated from the
pump beam by a dichroic mirror (DM) and spectrally limited by
an interference filter (IF) to 10 nm. The orthogonally polarized
photons of a PDC pair are separated by a polarizing beam splitter
(PBS) and coupled to single-mode optical fibers (SMF). Both
outputs can be mixed with an attenuated (AT) infrared laser
diode (LD) signal at fiber beam splitters (BS) to emulate dark
counts of detectors and a noise component of the explored
quantum state. The three output modes are then detected by
binary single-photon detectors based on silicon avalanche photo-
diodes (APD) operated in Geiger mode and actively quenched.
The absolute quantum efficiency of the detectors is specified by a
manufacturer to approximately 50%, while their relative effi-
ciencies were precisely measured prior to the experiment and
found to be 100%, 91:7� 0:2%, 92:2� 0:2% for TR, SA, SB
channels, respectively. Electronic dark counts of the detectors in
coincidence basis were found to be completely negligible.

TABLE I. Estimated probabilities p0 and p1, and the corre-
sponding witness �W are shown for several different pump
powers P and IF widths w ( � � � denotes no filter).

P [mW] w [nm] p0 p1 �W½�10�6�
50 2 0.9124 0.0875 412� 1
50 10 0.8589 0.1410 1666� 3
20 10 0.8425 0.1574 2370� 2
50 � � � 0.7095 0.2901 14 252� 17
5 � � � 0.7296 0.2704 11 825� 15
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surpassed by many standard deviations. Next, we inves-
tigate the influence of background noise on the source
properties. For this purpose we inject light from laser
diodes LD1 and LD2 into trigger and signal detection
blocks, respectively. Noise from LD2 emulates back-
ground noise of the source while noise coming from LD1
effectively increases dark count rate of the trigger thus
increasing the vacuum fraction p0. Table II shows the
results obtained when the amount of injected noise is the
same in both blocks and nrel indicates the normalized noise
strength. With increasing noise we can clearly observe
transition to the regime where �W < 0, as is also illus-
trated in Fig. 3.

Discussion.—Let us briefly compare our results with
other nonclassicality measures. Since p0 > 0:5 for all the
measured states (cf. Tables I and II and Fig. 3), their

Wigner function is always positive in the origin, Wð0Þ ¼
1
� hð�1Þni � 2p0�1

� > 0, where it is expected to exhibit

maximum negativityWð0Þ ¼ � 1
� for a pure single-photon

state [31]. On the other hand, all the measured states cannot
be expressed as a mixture of coherent states, therefore
they are nonclassical [32]. The nonclassicality can be

quantified by a gð2Þ parameter defined as gð2Þð0Þ ¼ hay2a2i
hayai2

[33]. Sub-Poissonian photon-number statistics is indicated

by gð2Þð0Þ< 1. The state produced by our source can be
excellently approximated by a density matrix �T ¼
p0j0ih0j þ p1j1ih1j þ ð1� p0 � p1Þj2ih2j because higher
photon terms are exponentially suppressed due to very low
parametric gain in the nonlinear crystal. In this case we find

gð2Þð0Þ ¼ 2ð1�p1�p0Þ
½2ð1�p0Þ�p1�2 yielding gð2Þð0Þ< 0:3661 for all

states. Simultaneously, all the results exhibit a very strong

photon anticorrelation effect, witnessed by � ¼ R0R2

R1AR1B
<

0:3706 which violates the classical inequality � � 1 [15].
The limits are given by data for nrel ¼ 1 in Table II and
Fig. 3. All the above parameters are monotonically de-
creasing as less noise is imposed by LD1 and LD2 and

for nrel ¼ 0:2 we already have � ¼ 0:0521 and gð2Þð0Þ ¼
0:0519.

In conclusion, we have examined a source producing
approximate single-photon states with a positive Wigner
function but exhibiting strong photon anticorrelation and
we have unambiguously proved that the generated states
cannot be expressed as mixtures of Gaussian states. In

comparison to the witness based on negativity of the
Wigner function [31], the present criterion can identify a
high nonclassicality of a much wider class of single-photon
sources, while avoiding the need for demanding estimation
of complete photon-number distribution or complicated
data processing [34]. Consequently, the presented criterion
is particularly useful for evaluation of single-photon
sources where negativity of the Wigner function cannot
be observed [35].
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[29] D. Höckel, L. Koch, and O. Benson, Phys. Rev. A 83,
013802 (2011).

[30] R. Filip and F. Grosshans (to be published).
[31] K. Laiho, K.N. Cassemiro, D. Gross, and C. Silberhorn,

Phys. Rev. Lett. 105, 253603 (2010).
[32] L. Lachman and R. Filip (to be published); using the same

structure of the witness, the nonclassicality witness can be
expressed as WðaÞ> ea�1=ð1þ aÞ.

[33] R. Loudon, The Quantum Theory of Light (Oxford
University Press, Oxford, 2000) p. 245 3rd ed..

[34] A. Mari, K. Kieling, B.M. Nielsen, E. S. Polzik, and J.
Eisert, Phys. Rev. Lett. 106, 010403 (2011).

[35] For a recent review, see: S. Scheel, J. Mod. Opt. 56, 141
(2009).

PRL 107, 213602 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 NOVEMBER 2011

213602-5

http://dx.doi.org/10.1103/PhysRevA.79.062302
http://dx.doi.org/10.1103/PhysRevA.79.062302
http://dx.doi.org/10.1080/09500340008233385
http://dx.doi.org/10.1080/09500340008233385
http://dx.doi.org/10.1103/PhysRevA.78.060303
http://dx.doi.org/10.1103/PhysRevA.78.060303
http://dx.doi.org/10.1103/PhysRevA.82.063833
http://dx.doi.org/10.1103/PhysRevLett.106.200401
http://dx.doi.org/10.1103/PhysRevLett.106.200401
http://dx.doi.org/10.1209/0295-5075/1/4/004
http://dx.doi.org/10.1209/0295-5075/1/4/004
http://dx.doi.org/10.1103/PhysRevA.62.052310
http://dx.doi.org/10.1063/1.123404
http://dx.doi.org/10.1364/OE.16.003032
http://dx.doi.org/10.1364/OE.16.003032
http://dx.doi.org/10.1038/nphoton.2008.101
http://dx.doi.org/10.1038/nphoton.2008.101
http://dx.doi.org/10.1103/PhysRevLett.76.2464
http://dx.doi.org/10.1103/PhysRevLett.76.2464
http://dx.doi.org/10.1364/OL.28.000052
http://dx.doi.org/10.1103/PhysRevA.67.061801
http://dx.doi.org/10.1364/OL.28.002387
http://dx.doi.org/10.1103/PhysRevA.68.043814
http://dx.doi.org/10.1103/PhysRevA.78.025804
http://dx.doi.org/10.1103/PhysRevA.78.025804
http://dx.doi.org/10.1103/PhysRevLett.104.063602
http://dx.doi.org/10.1364/OE.19.009352
http://dx.doi.org/10.1103/PhysRevA.79.035801
http://dx.doi.org/10.1103/PhysRevA.83.013802
http://dx.doi.org/10.1103/PhysRevA.83.013802
http://dx.doi.org/10.1103/PhysRevLett.105.253603
http://dx.doi.org/10.1103/PhysRevLett.106.010403
http://dx.doi.org/10.1080/09500340802331849
http://dx.doi.org/10.1080/09500340802331849

