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The determination of quark angular momentum requires the knowledge of the generalized parton

distribution E in the forward limit. We assume a connection between this function and the Sivers

transverse-momentum distribution, based on model calculations and theoretical considerations. Using this

assumption, we show that it is possible to fit nucleon magnetic moments and semi-inclusive single-spin

asymmetries at the same time. This imposes additional constraints on the Sivers function and opens a

plausible way to quantifying quark angular momentum.
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Nucleons are spin-1=2 composite particles made by
partons (i.e., quarks and gluons). Determining how much
of the nucleons’ spin is carried by each parton is a critical
endeavor towards an understanding of the microscopic
structure of matter. In this work, we propose a way to
constrain the longitudinal angular momentum Ja of an
(anti)quark with flavor a. To do this, we adopt an assump-
tion, motivated by model calculations and theoretical
considerations, that connects Ja to the Sivers transverse-
momentum distribution (TMD) measured in semi-
inclusive deep-inelastic scattering (SIDIS) [1]. The Sivers
function f?a

1T [2] is related to the distortion of the momen-
tum distribution of an unpolarized parton a when the
parent nucleon is transversely polarized. We show that
this assumption of relating Ja to f?a

1T is compatible with
existing data, and we derive estimates of Ja.

The total longitudinal angular momentum of a parton a
(with a ¼ q; �q) at some scale Q2 can be computed as a
specific moment of generalized parton distribution func-
tions (GPD) [3]:

JaðQ2Þ ¼ 1

2

Z 1

0
dxx½Haðx; 0; 0;Q2Þ þ Eaðx; 0; 0;Q2Þ�: (1)

The GPD Haðx; 0; 0;Q2Þ corresponds to the familiar col-
linear parton distribution function (PDF) fa1 ðx;Q2Þ, which
gives the probability of finding at the scale Q2 a parton
with flavor a and fraction x of the (longitudinal) momen-
tum of the parent nucleon. The forward limit of the GPD
Ea does not correspond to any collinear PDF [4]. It is
possible to probe the function Ea in experiments, but never
in the forward limit (see, e.g., [5]). Assumptions are even-
tually necessary to constrain Eaðx; 0; 0;Q2Þ. This makes
the estimate of Ja particularly challenging. The only
model-independent constraint is the scale-independent
sum rule

X
q

eqv

Z 1

0
dxEqvðx; 0; 0Þ ¼ �; (2)

where Eqv ¼ Eq � E �q and � denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f?ð0Þa
1T ðx;Q2

LÞ ¼ �LðxÞEaðx; 0; 0;Q2
LÞ; (3)

where we define the nth moment of a TMD with respect to
its transverse momentum k? as

f?ðnÞa
1T ðx;Q2Þ ¼

Z
d2k?

�
k2?
2M2

�
n
f?a
1T ðx; k2?;Q2Þ; (4)

and M is the nucleon mass.
In Eq. (3), LðxÞ is a flavor-independent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name ‘‘lensing
function’’ has been proposed by Burkardt to denote LðxÞ
[11]. Computations of the lensing function beyond the
single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences of
this simple assumption. As a more refined picture of TMD
and GPD emerges, it will be possible to improve the
reliability of this assumption or eventually discard it. The
present attempt should be considered as a ‘‘proof of con-
cept’’ for further studies in this direction.
The advantage of adopting the ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anomalous
magnetic moment to constrain the integral of the valence
Sivers function; second, it allows us to obtain flavor-
decomposed information on the x dependence of the
GPD E and ultimately on the quark total angular momen-
tum. This is an enticing example of how assuming model-
inspired connections between GPD and TMD can lead to
powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of them
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assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice. At
the starting scale Q0 and following the notation of
Ref. [17], we use the unpolarized distribution and frag-
mentation functions

fa1 ðx; k2?;Q2
0Þ ¼

fa1 ðx;Q2
0Þ

�hk2?i
e�k2?=hk2?i; (5)

Da
1ðz; P2

?;Q
2
0Þ ¼

Da
1ðz;Q2

0Þ
�hP2

?i
e�P2

?=hP2
?i; (6)

where z is the fraction of the energy of the fragmenting
parton a carried by the detected hadron. For fa1 ðxÞ we
use the MSTW08LO set [18], for Da

1ðzÞ we use the DSS
LO set [19]. We fix the width of the transverse-momentum
distributions for the initial parton and final hadron, respec-
tively, as

hk2?i ¼ 0:14 GeV2;

hP2
?i ¼ 0:42z0:54ð1� zÞ0:37 GeV2:

(7)

These parameters have been implemented in the HERMES
GMC_TRANS Monte Carlo generator and are known to give

a good description of the HERMES data [20]. In principle,
these functions should be evolved according to TMD evo-
lution [21]. However, here we choose to implement only
the evolution of their collinear part.

Neglecting the contribution of heavier c; b; t flavors,
we parametrize the Sivers function in the following way
(inspired by [15]):

f?a
1T ðx; k2?;Q2

0Þ ¼ f?ð0Þa
1T ðx;Q2

0Þ

� M2
1 þ hk2?i

�M2
1hk2?i

e�k2?=M
2
1e�k2?=hk2?i; (8)

where M1 is a free parameter related to the width of the
transverse-momentum distribution, and

f?ð0Þqv
1T ðx;Q2

0Þ ¼ Cqv
ffiffiffiffiffi
2e

p MM1

M2
1 þ hk2?i

1� x=�qv

j�qv � 1j
� ð1� xÞfqv1 ðx;Q2

0Þ; (9)

f?ð0Þ �q
1T ðx;Q2

0Þ ¼ C �q
ffiffiffiffiffi
2e

p MM1

M2
1 þ hk2?i

ð1� xÞf �q
1ðx;Q2

0Þ: (10)

Note that at Q0 we establish a relation between the Sivers
function for the combinations qv, �q, and the corresponding
unpolarized PDF, at variance with what has been done in
the literature [15,16]. This will turn out to be important
when establishing a relation with the anomalous magnetic
moment, since it guarantees that the valence Sivers func-
tion is integrable at any scale. We multiply the unpolarized
PDF by (1� x) to respect the predicted high-x behavior of
the Sivers function [22]. We introduce the free parameter

�qv to allow for the presence of a node in the Sivers
function at x ¼ �qv , as suggested by diquark model cal-
culations [9,10] and phenomenological studies [23] (see
the discussion in Ref. [24]). We imposed constraints on the
parameters Ca in order to respect the positivity bound for
the Sivers function [25], neglecting the contribution of the
helicity distribution g1ðxÞ (as in Ref. [15]). For the gluons,
we assume the same functional dependence of the sea
quarks, Eq. (10), with the replacement �q ! g.
Also for f?1T , we neglect the effect of TMD scale

evolution [26]. We assume that f?ð0Þ
1T ðx;Q2Þ evolves in

the same way as f1ðx;Q2Þ, based on the results of
Refs. [27,28] (note, however, that a slightly different
result has been obtained in Ref. [29]).
In conclusion, we describe the SIDIS Sivers asymmetry

in the following way:

A
sinð�h��SÞ
UT ðx; z; P2

T; Q
2Þ

¼ �M2
1ðM2

1 þ hk2?iÞ
hP2

Sivi2
zPT

M

�
z2 þ hP2

?i
hk2?i

�
3
e�z2P2

T=hP2
Siv

i

�
P
a
e2af

?ð0Þa
1T ðx;Q2ÞDa

1ðz;Q2Þ
P
a
e2af

a
1 ðx;Q2ÞDa

1ðz;Q2Þ ; (11)

where

hP2
Sivi ¼ M2

1

�
z2 þ hP2

?i
hk2?i

��
z2 þ hP2

?i
hk2?i

þ hP2
?i

M2
1

�
; (12)

and PT is the modulus of the transverse momentum of the
detected final hadron in the lab frame.
For the lensing function we use the following ansatz:

LðxÞ ¼ K

ð1� xÞ� : (13)

The choice of this form is guided by model calculations
[6–10], by the large-x limit of the GPD E [22], and by
the phenomenological analysis of the GPD E proposed
in Ref. [30]. We checked a posteriori that there is no
violation of the positivity bound on the GPD Eqv as ex-
pressed in Ref. [31], again neglecting the contribution of
g1ðxÞ. The nucleon anomalous magnetic moments are
computed as

�p¼
Z 1

0

dx

3
½2Euvðx;0;0Þ�Edvðx;0;0Þ�Esvðx;0;0Þ�;

�n¼
Z 1

0

dx

3
½2Edvðx;0;0Þ�Euvðx;0;0Þ�Esvðx;0;0Þ�:

(14)

We perform a combined �2 fit to 105 HERMES proton
data [32], to 104 COMPASS deuteron data [33], and to 8
JLab neutron data [34], of the Sivers asymmetry with
identified hadrons. We sum the statistical and systematic
errors in quadrature and neglect the experimental normal-
ization uncertainty. Since the HERMES and COMPASS
data are presented as three projections of the same data set
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(binned in three different ways: in x; z; Ph?), we consider
all three projections but we multiply their statistical errors

by a factor
ffiffiffi
3

p
and we divide by 3 the number of these

bins (105 and 104) when counting the number of degrees
of freedom. The anomalous magnetic moments are known
to a precision of 10�7 or higher [35]. However, given
the typical uncertainties on PDF extractions, our compu-
tation of � is affected by a theoretical error of the order
of 10�3. Therefore, for our present purposes we take �p ¼
1:793� 0:001, �n ¼ �1:913� 0:001.

We started from considering 15 free parameters. They
are C �q; Cqv ; �qv , with q ¼ u; d; s, the gluon coefficient Cg,
M1, the lensing parameters K and �, and the scales Q0 and
QL. However, after some explorations, we made a common
set of assumptions in all attempted fits. In all cases, we
fixed �dv;sv ¼ 0 (no nodes in the valence down and strange
Sivers functions, as suggested in Refs. [9,10,23,24]). We
also set Cg ¼ 0 (the influence of the gluon Sivers function
through evolution is anyway limited). Finally, all fits in-
dicated that Q0 ¼ QL ¼ 1 GeV was an acceptable choice.
Therefore, the actual number of free parameters is at most
10. In this framework, we conclude that it is possible to
give a simultaneous description of the SIDIS data and of
the nucleon anomalous magnetic moments assuming the
relation in Eq. (3).

We explored several scenarios characterized by different
choices of the parameters related to the strange quark. We
considered fits with fixed C�s ¼ 0, or with fixed Csv ¼ 0, or
with both parameters free (but constrained within positiv-
ity limits), or with both fixed Csv ¼ C �s ¼ 0. In all cases,
we obtained very good values of �2 per degree of freedom
(�2=d:o:f:) between 1.323 and 1.347. All fits lead to a
negative Sivers function for uv and large and positive for
dv, in agreement with previous studies [13–16] and with
some models [36–38]. The data are compatible with van-
ishing sea-quark contributions (with large uncertainties).
However, in the x range where data exist, large Sivers
functions for �u and �d are excluded, as well as large and
negative for �s. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function K
around 1.86 GeV. The parameter � is typically around 0.4
but can vary between 0.03 and 2. The node �uv appears
only above x � 0:78.

We now discuss in detail the case with fixed Csv ¼
C �s ¼ 0, because it gives the best �2=d:o:f: (1.323) and
suggests that it is possible to fit the present SIDIS data

for Sivers asymmetries in kaon emission without the
strange contribution to the Sivers function. The best-fit
values of the parameters are listed in Table I together
with their statistical errors corresponding to ��2 ¼ 1.
In Fig. 1, we show the corresponding outcome for

xf?ð1Þa
1T ðx;Q2

0Þ with a ¼ u; d; �u; �d. The Sivers functions

for s; �s vanish identically. The uncertainty bands are pro-
duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond to
��2 ¼ 1. Our results are comparable with other extrac-
tions of the Sivers function [13,15,16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [30,31,39,40].
We can now compute the contribution to the anomalous

magnetic moment of each valence quark flavor qv using
Eq. (14). We obtain

TABLE I. Best-fit values of the 8 free parameters for the case Csv ¼ C �s ¼ 0. The final
�2=d:o:f: is 1.323. The errors are statistical and correspond to ��2 ¼ 1

Cuv Cdv C �u C
�d

�0:229� 0:002 1:591� 0:009 0:054� 0:107 �0:083� 0:122

M1 (GeV) K (GeV) � �uv

0:346� 0:015 1:888� 0:009 0:392� 0:040 0:783� 0:001

0.04

0.03

0.02

0.01

0.00

0.00

0.01

0.02

0.03

0.04

0.004

0.000

0.004

0.2 0.4 0.6 0.8
x

0.004

0.000

0.004

FIG. 1. The function xf?ð1Þa
1T ðx;Q2

0Þ (see text) as a function of x
at the scale Q0 ¼ 1 GeV for a ¼ u; d; �u; �d from top panel to
bottom, respectively. The uncertainty bands are produced by the
statistical errors on the fit parameters listed in Table I.
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�uv ¼ 1:673� 0:003þ0:011
�0:000;

�dv ¼ �2:033� 0:002þ0:011
�0:000;

�sv ¼ 0þ0:011
�0:000:

The first symmetric error is statistical and comes again
from the errors of the fit parameters (��2 ¼ 1). The sec-
ond asymmetric error is purely theoretical. It is computed
by considering the other possible scenarios (corresponding
to different choices for Csv and C�s) which give good �2 fits
as well. However, a precise estimate of this error can be
obtained only by performing a neural network fit [41]. The
strange contribution to the anomalous magnetic moment is
negligible, because the positivity bounds severely limit the
Sivers function for s and, in turn, also Esv and �sv . Our
results are similar to other estimates of the strange Pauli
form factor [42,43] and lattice QCD calculations [44,45].

Using Eq. (1), we can compute the total longitudinal
angular momentum carried by each flavor q and �q at our
initial scale Q2

L ¼ 1 GeV2. Using the standard evolution
equations for the angular momentum (at leading order,
with 3 flavors only, and �QCD ¼ 257 MeV), we obtain

the following results at Q2 ¼ 4 GeV2:

Ju ¼ 0:229� 0:002þ0:008
�0:012;

J �u ¼ 0:015� 0:003þ0:001
�0:000;

Jd ¼ �0:007� 0:003þ0:020
�0:005;

J
�d ¼ 0:022� 0:005þ0:001

�0:000;

Js ¼ 0:006þ0:002
�0:006;

J �s ¼ 0:006þ0:000
�0:005:

As before, the first symmetric error is statistical and related
to the errors on the fit parameters, while the second asym-
metric error is theoretical and reflects the uncertainty in-
troduced by the other possible scenarios. In the present
approach, we cannot include the (probably large) system-
atic error due to the rigidity of the functional form in
Eqs. (8)–(10) and (13). The bias induced by the choice
of the functional form may affect, in particular, the deter-
mination of the sea-quark angular momenta, since they
are not directly constrained by the values of the nucleon
anomalous magnetic moments. Our present estimates
(at Q2 ¼ 4 GeV2) agree well with other analyses
[30,31,39,40,46,47]. It indicates a total contribution to
the nucleon spin from quarks and antiquarks of 0:271�
0:007þ0:032

�0:028, of which 85% is carried by the up quark.

In summary, we have presented a determination of the
quark angular momentum assuming a connection between
the collinear limit of the generalized parton distribution E
and the Sivers transverse-momentum distribution. We have
shown that it is possible to fit at the same time the nucleon
anomalous magnetic moments and data for semi-inclusive
single-spin asymmetries produced by the Sivers effect.
Several different scenarios produce equally good �2 fits.

Our strategy opens a plausible way to quantifying the quark
angular momentum and imposes additional constraints on
the Sivers function.
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[45] P. Hägler, J. Phys. Conf. Ser. 295, 012009 (2011).
[46] M. Wakamatsu and Y. Nakakoji, Phys. Rev. D 77, 074011

(2008).
[47] J. Bratt et al. (LHPC Collaboration), Phys. Rev. D 82,

094502 (2010).

PRL 107, 212001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 NOVEMBER 2011

212001-5

http://dx.doi.org/10.1103/PhysRevLett.107.152002
http://dx.doi.org/10.1103/PhysRevLett.107.152002
http://dx.doi.org/10.1103/PhysRevD.79.016003
http://dx.doi.org/10.1103/PhysRevD.79.016003
http://dx.doi.org/10.1103/PhysRevD.79.094010
http://dx.doi.org/10.1103/PhysRevD.79.094010
http://dx.doi.org/10.1103/PhysRevD.80.114002
http://dx.doi.org/10.1103/PhysRevD.80.114002
http://dx.doi.org/10.1103/PhysRevD.72.054013
http://dx.doi.org/10.1140/epjc/s2004-02063-4
http://dx.doi.org/10.1140/epjc/s2004-02063-4
http://dx.doi.org/10.1103/PhysRevLett.103.152002
http://dx.doi.org/10.1103/PhysRevLett.103.152002
http://dx.doi.org/10.1016/j.physletb.2009.01.060
http://dx.doi.org/10.1016/j.physletb.2009.01.060
http://dx.doi.org/10.1103/PhysRevLett.107.072003
http://dx.doi.org/10.1103/PhysRevLett.107.072003
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1103/PhysRevD.78.034002
http://dx.doi.org/10.1103/PhysRevD.78.034002
http://dx.doi.org/10.1103/PhysRevD.79.074001
http://dx.doi.org/10.1103/PhysRevD.79.074001
http://dx.doi.org/10.1103/PhysRevD.81.114013
http://dx.doi.org/10.1103/PhysRevD.75.094003
http://dx.doi.org/10.1103/PhysRevD.75.094003
http://dx.doi.org/10.1140/epjc/s10052-008-0833-x
http://dx.doi.org/10.1016/j.nuclphysb.2010.05.008
http://dx.doi.org/10.1103/PhysRevLett.99.122003
http://dx.doi.org/10.1103/PhysRevD.77.033006
http://dx.doi.org/10.1103/PhysRevD.77.033006
http://dx.doi.org/10.1103/PhysRevC.79.065202
http://dx.doi.org/10.1088/1742-6596/295/1/012009
http://dx.doi.org/10.1103/PhysRevD.77.074011
http://dx.doi.org/10.1103/PhysRevD.77.074011
http://dx.doi.org/10.1103/PhysRevD.82.094502
http://dx.doi.org/10.1103/PhysRevD.82.094502

