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In the inflationary scenario of loop quantum cosmology in the presence of inverse-volume corrections,

we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to compare

with observations. Since inverse-volume corrections can provide strong contributions to the running

spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially

important. Using the recent data of cosmic microwave background and other cosmological experiments,

we place bounds on the quantum corrections.
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One of the motivations to search for a quantum theory of
gravity is the desire to unify general relativity with quan-
tum mechanics and, thereby, resolve classical singularities
such as the big bang or those associated with black holes.
Observational implications of quantum gravity, however,
present a delicate issue. Based on dimensional grounds,
cosmology in a nearly isotropic setting seems to allow
quantum corrections only as powers of the small quantity
‘PlH � 10�10, where ‘Pl is the Planck length and H�1 ¼
a= _a is the Hubble radius (a is the scale factor in the flat
Friedmann-Robertson-Walker background and dots denote
derivatives with respect to cosmic time t). This dimen-
sional argument is supported by low-energy effective ac-
tions of higher-curvature type.

Dimensional arguments, generally, are overcome if there
are more than two dynamical scales of the same dimension.
Detailed physics rather than rough estimates are then re-
quired to determine which geometric mean of the scales is
relevant in a given regime. In cosmology, an additional
distance scale L would allow a multitude of dimensionless
combinations ‘�PlH

�L� with �� �þ � ¼ 0, not all of

them small. Quantum gravity provides ample motivation
for the existence of a third scale by suggesting discrete
spatial structures. While the discreteness scale L is often
expected to be near ‘Pl, it is not identical to it and also
depends on excitation levels of states (rather than just
Newton’s and Planck’s constants).

One explicit formulation of such a discrete version of
gravity is loop quantum gravity (LQG) [1]. Discreteness
arises on the space of metrics (geometrical operators
acquiring discrete spectra). In a nearly homogeneous
quantum space-time, one can think of any region of volume
V to consist of discrete patches, each roughly of size L3

with the length L determined by an underlying quantum-
gravity state. Discrete spectra imply that derivatives by
L, as they ubiquitously appear in canonical expressions
via Poisson brackets, are replaced by finite difference

quotients. As a simple example for so-called inverse-

volume corrections, ð2 ffiffiffiffi
L

p Þ�1 ¼ d
ffiffiffiffi
L

p
=dL would, when

evaluated for discrete operators, become ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ ‘Pl

p �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� ‘Pl

p Þ=2‘Pl, which strongly differs from ð2 ffiffiffiffi
L

p Þ�1 for
L� ‘Pl. For larger L, corrections are perturbative and of
the order ‘Pl=L; no factor ofH appears. The ratio ‘Pl=L can
easily be much larger than ‘PlH, explaining why this type
of discreteness could give rise to stronger quantum effects.
The results of detailed constructions in LQG, following

[2,3], will be summarized momentarily. First, we empha-
size that the discreteness does not break general covariance
in the equations used here (assuming small corrections).
This has been demonstrated by an elaborate analysis of the
gauge contents of the quantum-corrected theory, verifying
the existence of a closed algebra of gauge generators [4].
Covariance, and the space-time structure it belongs to, is
then not destroyed but deformed. (Deformations of classi-
cal symmetries play an important role in several ap-
proaches to quantum-gravity phenomenology [5]. The
deformations considered here are on a different footing,
however, because they do not refer just to Poincaré trans-
formations of Minkowski space.)
Here, using currently available data, we place con-

straints on inverse-volume corrections for inflation. Since
scalar and tensor perturbations are subject to strong mod-
ifications of the power on large scales, the corrections are
bounded from above. A detection of gravitational waves
and the precise measurement of cosmic microwave back-
ground (CMB) anisotropies in future observations such as
Planck will potentially allow us to make a decisive test for
loop quantum cosmology (LQC) inflation.
A simplified implementation of corrections expected

from LQG in cosmological scenarios via perturbations
around homogeneous or other reduced models can be
achieved in LQC [6]. With a phenomenological approach
to effective dynamics, the cosmological equations can be
summarized in a single Mukhanov equation for the
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gauge-invariant scalar perturbation uk, u00k þ ðs2k2 �
z00=zÞuk ¼ 0 [3] in momentum space with the comoving
wave number k, where primes denote derivatives with
respect to conformal time � ¼ R

a�1dt. Similarly, tensor
modes are subject to the equation w00

k þ ð�2k2 �
~a00=~aÞwk ¼ 0 [7]. Here, zða; ’Þ and ~aðaÞ are background
functions and �2 � 1þ 2�0�Pl and s

2 ¼ 1þ ��Pl are the
propagation speeds squared, differing from the speed of
light by quantum corrections.

The quantum corrections are characterized by
(i) numerical coefficients �0 and � and (ii) the function
�Pl / a�� determining the size of inverse-volume correc-
tions. The values of �0, �, and � are currently subject to
quantization ambiguities. � is parametrized as � ¼
��0ð�=6þ 1Þ=3þ �0ð5� �=3Þ=2, where �0 is related
to �0 and � by the consistency condition [3]

�0ð�� 3Þ ¼ 3�0ð�� 6Þ=ð�þ 6Þ: (1)

While � takes values in the range 0<� � 6, the size of
�Pl does not depend on the values of �0 and �0. With �>
0, �Pl is larger at early times, in agreement with discrete-
ness departing from the Planck scale in a more classical
universe. The aim of this Letter is to restrict �Pl by obser-
vations. We will mainly place bounds on the combination
�0�Pl during slow-roll (SR) inflation, for which the precise
origin of �0 and �0 or the scale hidden in �Pl is not
essential.

Corrections in the evolution equations arise only in the
k2 term, not in the time derivative of the d’Alembertian, yet
they are covariant according to the corrected gauge trans-
formations [4]. Thus, one typical assumption of higher-
curvature theories is violated. Moreover, the propagation
speed of tensor modes differs from the scalar one since in
general 2�0 � �. Again, this is only possible with the
change in the underlying manifold and gauge structure,
and gives rise to additional characteristic effects. With
different types of equations for scalar and tensor modes,
there are changes to the standard inflationary spectra and
the tensor-to-scalar ratio.

In Ref. [3], two of us evaluated the inflationary observ-
ables in terms of the three SR parameters 	 ¼ � _H=H2,

 ¼ � €’=ðH _’Þ, and �2 ¼ ð €’= _’Þ_=H2, where ’ is a
scalar field with potential Vð’Þ. In order to place observa-
tional bounds on concrete inflaton potentials, it is more
convenient to use SR parameters expressed by V and its
derivatives: 	V � ��2ðV;’=VÞ2=2, 
V � ��2V;’’=V,

�2
V � ��4V;’V;’’’=V

2, where �2 ¼ 8G (G is the gravi-

tational constant). For conversion formulas from 	; 
; �2 to
	V; 
V; �

2
V and all the technical details, we refer to [8],

together with a discussion of cosmic variance.
The power spectra of scalar and tensor perturbations,

evaluated at the Hubble horizon crossing during inflation
(k � aH), are given, respectively, by [3]

P s ¼ GH2

	
ð1þ �s�PlÞ; P t ¼ 16GH2


ð1þ �t�PlÞ;

(2)

where �s ¼ �0ð�=6þ 1Þ þ ��0=ð2	Þ � ½��0ð�þ 6Þ þ
3�0ð15� �Þ�=½18ð�þ 1Þ� and �t ¼ ð�� 1Þ�0=ð�þ 1Þ.
We expand the scalar spectrum about a pivot wave number
k0, as

lnP sðkÞ ¼ lnP sðk0Þ þ ½nsðk0Þ � 1�xþ �sðk0Þ
2

x2

þ X1
m¼3

�ðmÞ
s ðk0Þ
m!

xm; (3)

where x ¼ lnðk=k0Þ, nsðkÞ � 1 � d lnP sðkÞ=d lnk, and

�ðmÞ
s ðkÞ � dm�2�s=ðd lnkÞm�2. The tensor spectrum can

be expanded in a similar way with a different index ntðkÞ �
d lnP tðkÞ=d lnk. While such expansions to second order
are standard in cosmology, terms of order higher than 2
will become important in our analysis.
The spectral indices are

ns � 1 ¼ �6	V þ 2
V � cns�Pl; nt ¼ �2	V � cnt�Pl;

(4)

with quantum-gravity corrections cns;t ¼ fs;t þ � � � whose
dominant contributions are fs � �½3�0ð13�� 3Þ þ
�0�ð6þ 11�Þ�=½18ð�þ 1Þ� and ft � 2�2�0=ð�þ 1Þ.
For � * Oð1Þ the variation of �Pl is fast (�Pl / a�� /
k�� at Hubble crossing), so that fs;t provide dominant

contributions to the scalar and tensor runnings as well,
�s;tðk0Þ � dns;t=d lnkjk¼k0 � �fs;t�Plðk0Þ. Similarly, the

mth order terms are �ðmÞ
s;t ðk0Þ � ð�1Þm�m�1fs;t�Plðk0Þ,

and hence we can evaluate the sum in Eq. (3) as

X1
m¼3

�ðmÞ
s;t

m!
xm ¼

�
x

�
1� 1

2
�x

�
þ e��x � 1

�

�
fs;t�Pl: (5)

This expression is valid for any value of � and of the pivot
scale k0 within the observational range of CMB. Since the
LQC corrections to the runnings�s;t can be large, inclusion

of the higher-order terms (5) is important to estimate the
power spectra properly.
For the CMB likelihood analysis we also take into

account the second-order terms of slow-roll parameters,
i.e., �s ¼ �24	2V þ 16	V
V � 2�2

V þ c�s
�Pl and �t ¼

�4	Vð2	V � 
VÞ þ c�t
�Pl, where the dominant contribu-

tions to c�s;t
correspond to c�s;t

� �fs;t. In the numerical

code, the full expressions of the coefficients cns;t and c�s;t

[8] are used. At the pivot scale k0 we have the tensor-to-
scalar ratio rðk0Þ � P tðk0Þ=P sðk0Þ ¼ 16	Vðk0Þ þ
cr�Plðk0Þ, where cr ¼ 8½3�0ð3þ 5�þ 6�2Þ � �0�ð6þ
11�Þ�	Vðk0Þ=½9ð�þ 1Þ� � 16��0
Vðk0Þ=3.
In the quasi-de Sitter background, �Pl / k�� gives the

relation �PlðkÞ � �Plðk0Þðk=k0Þ�� ¼ �Plð‘0Þð‘=‘0Þ��,
where ‘ are the CMB multipoles related to k via
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k � ðh=104Þ‘ Mpc�1 (h � 0:7 is the reduced Hubble con-
stant). With the large-volume expansion of quantum cor-
rections, we require that �PlðkÞ � 1 at all scales. For
�> 0 the LQC correction is most significant on the largest
scales observed in the CMB (‘ ¼ 2). This property can be
clearly seen in Fig. 1, where the pivot scale for the scalar
power spectrum is taken to be ‘0 ¼ 29. Intuitively, this
happens because the largest cosmological scales corre-
spond to those where and when space-time quantum effects
were larger, while smaller scales have been affected by
ordinary physics. Imposing the condition �Plð‘ ¼ 2Þ � 1,
this gives

�Plð‘0Þ � ð2=‘0Þ� (6)

at the multipole ‘0. For larger � and ‘0, �Plð‘0Þ is con-
strained to be smaller. We assume that inflation completely
takes place in the large-volume regime, and that longer-
wavelength modes that might violate the bound (6) do not
enter the inflationary Fourier analysis.

For concreteness, let us consider the power-law potential
Vð’Þ ¼ �’n, for which 	V ¼ n2=ð2�2’2Þ and


V ¼ 2ðn� 1Þ
n

	V; �2
V ¼ 4ðn� 1Þðn� 2Þ

n2
	2V: (7)

Among the variables�,�0, and �0 we have the relation (1),
a condition under which, for given n and�, the inflationary
observables can be expressed via 	V and � � �0�Pl for

� � 3, or by 	V and ~� � �0�Pl for � ¼ 3.
We carry out the CMB likelihood analysis by varying the

parameters 	V and � in the cosmological Monte Carlo
(COSMOMC) code [9]. We use the 7-year WMAP data
combined with large-scale structure, the Hubble constant
measurement from the Hubble Space Telescope, super-
novae type Ia, and big bang nucleosynthesis [10]. We
assume the flat �-cold dark matter model with no fraction
of massive neutrinos in the dark matter density (f� ¼ 0).

In the likelihood analysis, we vary the following eight
parameters: (i) baryon density today, �b, (ii) dark matter
density today,�c, (iii) the ratio of the sound horizon to the
angular diameter distance, �, (iv) the reionization optical
depth, �, (v) �ðk0Þ, (vi) 	Vðk0Þ, (vii) P s (k0), and (viii) the
Sunyaev-Zel’dovich amplitude, ASZ. We take the pivot
wave number k0 ¼ 0:002 Mpc�1 (‘0 � 29) used by the
WMAP team. �ðk0Þ and 	Vðk0Þ are constrained at this
scale. While the bound on � depends on the pivot scale
(and it tends to be smaller for larger k0), that on ðk0Þ��ðk0Þ
does not.
While we assume a standard treatment of the reioniza-

tion with a smooth interpolation, more general reionization
scenarios can potentially affect constraints on observables
especially for ns > 1 [11]. The analysis in [11] shows that
the allowed region with ns < 1 is not strongly modified,
which is the case for our potentials.
The exponential term e��x ¼ ðk0=kÞ� in Eq. (5) gives

rise to the enhancement of the power spectra on large
scales, as we see in Fig. 1. In this sense the LQC correc-
tions can be distinguished from the suppression effects
coming from the noncommutative geometry or string cor-
rections [12]. For � * 3, the growth of the term e��x is so
significant that �Plð‘Þmust be very much smaller than 1 for
most of the scales observed in the CMB, in order to satisfy
the bound �Plð‘ ¼ 2Þ � 1. More precisely, LQC correc-
tions manifest themselves mainly at ‘ ¼ 2; 3, where cos-
mic variance dominates, so it seems implausible to isolate
these effects. For �< 3, the LQC modification to the
classical power spectra also affects larger multipoles ‘,
and hence it is possible to constrain it from CMB
anisotropies.
In Fig. 2 we plot the 2D posterior distributions on the

parameters �ðk0Þ and 	Vðk0Þ with k0 ¼ 0:002 Mpc�1 for
n ¼ 2 and � ¼ 2. The two parameters are constrained to
be �ðk0Þ< 6:7	 10�5 and 	Vðk0Þ< 0:013 (95% C.L.).
The modification of the large-scale power spectra (‘ &
20) shown in Fig. 1 leads to the upper bound on �ðk0Þ.
The condition (6) gives the prior �Plð‘0Þ � 4:8	 10�3 at
‘0 ¼ 29, so that for �0 ¼ Oð1Þ the observational bound is
smaller by 2 orders of magnitude. For larger k0 the obser-
vational upper bounds on �ðk0Þ tend to be smaller for given
�. For k0 ¼ 0:05 Mpc�1 and � ¼ 2, we find that �ðk0Þ<
1:2	 10�7 (95% C.L.), in which case the theoretical ex-
pected amplitude [�Plðk0Þ � 10�8 or a few orders of mag-
nitude higher [3]] can be accessible.
For smaller � the observational upper bound on �ðk0Þ

tends to be larger, with milder enhancement of the
power spectra on large scales. In Fig. 3 we show the like-
lihood results for � ¼ 1, in which case the LQC
correction is constrained to be �ðk0Þ< 3:6	 10�2

(95% C.L.). Meanwhile, the a priori criterion (6) gives
�Plðk0Þ � 6:9	 10�2. For �0 ¼ Oð1Þ, the case � ¼ 1 is
marginally consistent with the combined SR=�Pl

truncation.

2 5 10 20 50 100

1.0

1.1

1.2

1.3
P

s
P

s
0

FIG. 1. Primordial scalar power spectrum P sð‘Þ for the case
n ¼ 2, � ¼ 2, and 	Vðk0Þ ¼ 0:009, with three different values of
�ðk0Þ: 0 (classical case, dotted line), 7	 10�5 (experimental
upper bound, solid line), 4:8	 10�4 (1=10 of the a priori upper
bound, dashed line). Here the pivot wave number is k0 ¼
0:002 Mpc�1, which corresponds to ‘0 ¼ 29.
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For � & 1, the exponential factor e��x does not change
rapidly with smaller values of fs;t, so that the LQC effect

on the power spectra would not be very significant even if
�ðk0Þwas as large as 	Vðk0Þ. Our likelihood analysis shows
that the observational upper bound on �ðk0Þ exceeds the
a priori upper limit of �Plðk0Þ given by Eq. (6). Since �ðk0Þ
can be as large as 1, the validity of the approximation
�ðk0Þ< 	Vðk0Þ used in the main formulas may break
down in such cases.

Under the conditions 	V; � � 1, it follows that 	V �
ð�2=2Þð _’=HÞ2. Then the number of e-foldings during in-

flation is given by N � Rtf
t d~tH � �

R
’
’f

d~’=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	Vð~’Þ

p
,

where ’f is the field value at the end of inflation [deter-

mined by the condition 	V � Oð1Þ]. For the power-law
potentials one has N � n=ð4	VÞ � n=4, which gives 	V �
n=ð4N þ nÞ. For n ¼ 2, the theoretically constrained range
45<N < 65 corresponds to 0:008< 	V < 0:011. The
probability distributions of 	V in Figs. 2 and 3 are consis-
tent with this range even in the presence of the LQC
corrections, so the quadratic potential is compatible with
observations as in standard cosmology.

In summary, in inflation combined with LQC inverse-
volume corrections we provided general formulas for the
scalar and tensor power spectra and placed observational
bounds on the size of corrections for a quadratic potential.
In [8] we ran the COSMOMC code also for other potentials
such as V / ’4 and V / e��’ (for which the inflationary
observables reduce, again, to � and 	V). We found that the
observational upper bounds are practically independent of

the inflaton potentials. This is because the LQC correction
is approximately given by �PlðkÞ � �Plðk0Þðk=k0Þ��,
which only depends on � and the pivot scale k0.
Interesting and nontrivial effects do arise from the modi-
fied space-time structure underlying the dynamics. Even
though quantum-geometry corrections are small, they can
significantly change the runnings of spectral indices. Thus,
the observational bounds on �Pl can be much closer to
theoretical values [Oð10�8Þ] than often thought in quantum
gravity. Our new techniques set the stage for systematic
and stringent phenomenological evaluations.
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