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We propose a method to coherently transfer quantum information, and to create entanglement, between

topological qubits and conventional spin qubits. Our suggestion uses gated control to transfer an electron

(spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors.

Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition

states into superposition states of the Majorana system, and vice versa. Furthermore, we show how a

topological superconductor can be used to facilitate long-distance quantum information transfer and

entanglement between spatially separated spin qubits.
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Introduction.—The main challenge facing the field of
quantum computation is the fragile nature of quantum
states, i.e., their tendency to couple to the environment
and decohere into classical states. In topological quantum
computation schemes [1,2], quantum information is stored
in nonlocal degrees of freedom which are protected from
decoherence stemming from local perturbations. These
nonlocal degrees of freedom can be manipulated by
braiding operations, i.e., by physical exchange of the
associated local quasiparticle excitations, if these exhibit
non-Abelian (noncommutative) statistics [3,4]. The most
prominent candidate for non-Abelian quasiparticles is so-
called Majorana modes [5]. These are zero-energy excita-
tions existing in vortices or on edges of systems described
by a BCS Hamiltonian with p-wave type pairing, believed
to be realized, e.g., in the � ¼ 5=2 fractional quantum
Hall state [6], in the superconductor Sr2RuO4 [7], and in
topological insulators [8] or semiconductors with strong
spin-orbit coupling [9–12] with induced magnetism and
superconductivity.

However, Majorana modes are examples of Ising anyons
[13], for which braiding operations are not sufficient for
universal quantum computation [2]. In general, manipula-
tion and readout of topological qubits appear very chal-
lenging compared to conventional qubit systems. It would
therefore be highly desirable to be able to transfer quantum
information between conventional and topological qubits
to combine the advantages of each system. Such interfaces
have been suggested in the context of anyonic optical
lattice models [14], and more recently between Majorana
modes and superconducting flux qubits [15–17], and
Ref. [18] suggested using an ancillary flux qubit to couple
a topological qubit to a qubit defined in a double quantum
dot.

In this Letter, we propose a way to directly couple
topological and standard spin qubits [19–21] (in contrast
to the suggestion in Ref. [18], we consider qubits based
solely on the spin of an electron in a quantum dot, not on
the decoherence-prone charge component in a double dot).

The suggested setup is sketched in Fig. 1, where the
topological superconductors (TS) are exemplified by
wires, but the discussion is not limited to this specific
case. A quantum dot is tunnel coupled to two Majorana
edge modes, described by the operators �1;2. Changing the

gate voltage Vg affects a transfer of an electron between the

dot and the TS. If the Majorana modes are spin-polarized in
opposite directions (see below) as indicated by the arrows,
the tunneling electron must ‘‘split,’’ with the spin-up and
spin-down components tunneling to or from opposite sides.
This coherently transfers a spin superposition state (spin
qubit) into a superposition state within the degenerate
ground state described by the Majorana modes, and vice
versa. In this Letter, we show in detail how such gate-
controlled electron transfer affects qubit transfer between
topological and spin qubits, and generates entangled spin-
topological two-qubit states. In addition, we demonstrate
how a multidot setup can be used to coherently transfer
spin qubits between spatially separated quantum dots via
the TS, and to generate long-distance maximally entangled
Bell states between spin qubits. Quantum dots coupled to
Majorana modes were previously considered in Ref. [22].
That work, however, considered spin-polarized dots, which
were used only to manipulate the Majorana system, not to
transfer quantum information between conventional and
topological qubits.

FIG. 1 (color online). Proposed setup for quantum information
transfer between a spin qubit on the quantum dot and a topo-
logical qubit, defined within the degenerate ground state of the
topological superconductors (TS), with Majorana modes �1;2 on

the edges. The gate voltage Vg controls electron transfer between

the dot and TS, thereby transferring quantum information be-
tween the two systems.
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Model.—Our proposal sets some demands on the experi-
mental realization of the setup sketched in Fig. 1. First, the
dot has to be spin degenerate. Since magnetic fields usually
cannot be applied locally, the Zeeman term needed to
induce topological superconductivity could instead be pro-
vided by proximity with a magnetic insulator, see, e.g.,
Refs. [8,9]. Alternatively, a magnetic field could be tuned
to recover spin degeneracy, but between spin-up and spin-
down states in different dot orbitals. Second, a Majorana
mode is always spin polarized in the sense that, for a given
tunnel junction, it can only accept or give off electrons with
a specific spin projection: we need this spin polarization
to be antiparallel for the �1 and �2 modes. Under idealized
conditions, the spin polarization direction is often
controlled by the directionality of the border between
topological and nontopological regions (and would there-
fore be opposite for opposite edges as sketched in Fig. 1),
as discussed, e.g., for Majorana bound states in one-
dimensional spin-orbit coupled wires [11] or at
ferromagnet-superconductor interfaces on the quantum
spin Hall edge [23,24], and for Majorana edge states,
e.g., on the surface of topological insulators with induced
superconductivity and magnetism [8]. Under nonideal con-
ditions, the polarization direction most likely depends on
the details of the edge, and achieving near perfect antipar-
allel spin polarization probably requires in situ control of
some parameter, e.g., the chemical potential near the
edges. Finally, we need two more Majorana modes in the
system, ��1 and ��2, formed, e.g., at the opposite edges of
the wires or interfaces, or in vortices in the bulk.

The low-energy Hamiltonian (valid below the supercon-
ducting gap �) of the coupled dot-Majorana system is
described by (cf. Refs. [22,25,26])

H ¼ HD þ �1ð�1d" � ��
1d

y
" Þ þ �2ð�2d# � ��

2d
y
# Þ; (1)

where HD¼�
P

�n�þUn"n# describes the dot, n�¼dy�d�
is the number operator for spin projection � (measured
along the direction of the Majorana spin polarization),
� is the on-site energy (controlled by Vg), and U is the

Coulomb charging energy for electrons on the dot. The two
last terms describe tunneling between the dot andMajorana
mode j ¼ 1, 2, with tunnel coupling �j, where only spin-up

(spin-down) electrons can tunnel into mode 1 (2).
A Majorana quasiparticle is its ‘‘own hole’’ and the

operators therefore satisfy �y
j ¼ �j, and we assume them

to be normalized, �2
j ¼ 1. It is therefore not possible to

count the occupation of a Majorana mode, but two
Majoranas can be combined to form one ordinary fermion,

�j ¼ fj þ fyj , ��j ¼ iðfyj � fjÞ, where fyj creates a fer-

mion and fyj fj ¼ nj ¼ 0, 1 counts the occupation of the

corresponding state. The total system can be described by
the number states jn1n2Di ¼ jn1n2iMjDiD, where D ¼ 0,
" , # describes the dot, which can be empty or occupied by

one electron (we consider only gate voltages where double
occupation is suppressed by the large U).
The Hamiltonian (1) does not conserve particle num-

ber, but the parity (even or odd) of the total number of
fermions (in the dot and the TS) is conserved and we focus
for definiteness on the six-dimensional even-parity sub-
space. Figure 2(a) shows the eigenenergies as a function of

~� ¼ �=�, where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�1j2 þ j�2j2
p

. The two degenerate
ground states are

jg1i ¼ mð~�Þj000i þ ��
1

�
nð~�Þj10 "i þ ��

2

�
nð~�Þj01 #i; (2)

jg2i ¼ mð~�Þj110i � ��
2

�
nð~�Þj10 #i þ ��

1

�
nð~�Þj01 "i; (3)

where mð~�Þ ¼ 1ð0Þ when ~� � 1ð~� � �1Þ and nð~�Þ has
the opposite behavior, corresponding to the dot being
empty (full) in those limits. The ground state is degenerate,
regardless of the phase difference across the junction,
provided that the spin polarizations of the �1 and �2 modes
are perfectly antiparallel, in which case the ground state
energies depend only on �.
Now we will exploit this model to transfer quantum

information between spin and topological qubits. The basic
operation consists of sweeping Vg to transfer an electron

between the dot and the Majorana system. In addition, we
will need the ability to measure one of the fermion occu-
pation numbers, e.g., n1. How such a measurement is done
depends on the concrete realization of the TS, see, e.g.,
Refs. [1,8,15,27].
Entangling spin and topological qubits.—We first as-

sume that the system is prepared in a state ji1i with an

FIG. 2 (color online). (a) Eigenenergies E of the even-parity
subspace of Eq. (1) as a function of �=� in the U ¼ 1 limit.
Each eigenstate is twofold degenerate. PE and PF represent
operations changing the gate voltage to empty and fill the dot,
respectively. (b) Sketch of setup with two quantum dots, used for
long-distance coherent transfer of spin qubits via the TS and to
generate long-distance entanglement of spin qubits.
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empty dot and a topological qubit defined in the even-
parity subspace of the Majorana system (n1 þ n2 even)

ji1i ¼ ð�j00iM þ �j11iMÞj0iD ¼ �jg1i þ �jg2i; (4)

where the second equality holds when ~� � 1. Note that
using four Majoranas to define one topological qubit is
standard practice since parity conservation prevents chang-
ing the state of a qubit based on only two Majoranas [13].
Next, we increase the gate voltage so as to move down the
dot level to ~� � �1. If this gate sweep is done adiabati-
cally, the system remains in the same superposition of the
ground states, which is now, however (up to an overall
dynamical phase factor)

ji1i ! ��
1

�
ð�j10iM þ �j01iMÞj "iD

þ ��
2

�
ð��j10iM þ �j01iMÞj #iD: (5)

This is already a very interesting result: by simply sweep-
ing the gate voltage so as to fill the dot with an electron, the
spin dependence of the tunneling terms have given rise to
an entangled two-qubit state, involving the quantum dot
spin and a topological qubit defined within the odd-parity
sector of the Majorana system. Note that if the initial state
is either jg1i or jg2i, and if j�1j ¼ j�2j, the result is a max-
imally entangled Bell state. We denote by PF the operation
of filling the dot with an electron by an adiabatic gate
sweep. Up to an overall phase, this has the same effect as
acting on a state with an empty dot with the operator

PF ¼ 1

�
ð���

1�1d
y
" � ��

2�2d
y
# Þ: (6)

Transferring topological to spin qubits.—Starting from
the entangled two-qubit state in Eq. (5) we can measure,
e.g., n1, collapsing the Majorana wave function to either
Nj01iMð��

1�j "iD þ ��
2�j #iDÞ if the result is n1 ¼ 0, or

Nj10iMð��
1�j "iD � ��

2�j #iDÞ, if n1 ¼ 1, where N is a
normalization factor. These states describe a spin qubit
on the dot, which, if j�1j ¼ j�2j, is related to the initial
topological qubit state by a unitary transformation.
Knowing the result of the n1 measurement and the relative
phase of �1 and �2, we know the transformation and have
thus coherently transferred the topological qubit we started
with in ji1i to a spin qubit.

Transferring spin to topological qubits.—Next we con-
sider the opposite operation: We start with the Majorana
system prepared in a known state, say n1 ¼ 1, n2 ¼ 0, and
an occupied dot, where the spin qubit is in some arbitrary
state, ji2i ¼ j10iMðaj "iD þ bj #iDÞ. For ~� � �1 this ini-
tial state written in the eigenbasis is

ji2i ¼ 1

�
ða�1jg1i � b�2jg2i � a��

2jd1i þ b��
1jd2iÞ; (7)

where jd1i ¼ ð��2j10 "i þ �1j01 #iÞ=� and jd2i ¼
ð�1j10 #i þ �2j01 "iÞ=� are the eigenstates with energy

equal to � in Fig. 2(a), which have no component with
an empty dot. Thus, even if Vg is swept adiabatically to

~� � 1, the dot may not be empty. This is in fact to be
expected since the dimension of the Hilbert space with a
filled dot is twice as large as that with an empty dot. We
assume that the charge on the dot is measured after the gate
sweep, and initially assume that this measurement indi-
cates an empty dot, and show how to deal with the case of a
filled dot below. After the charge measurement, the state is
therefore given by the jg1i and jg2i components of Eq. (7)
only. We denote by PE the operation of adiabatically
sweeping the gate from ~� � �1 to ~� � 1, followed by a
charge measurement which is assumed to show an empty
dot. Up to a phase, this is equivalent to acting on a state
with a filled dot with

PE ¼ Nð�1�1d" þ �2�2d#Þ; (8)

where the normalization factor N depends on the initial
state because of the dot charge measurement, associated
with a partial collapse of the wave function. The effect on
the state ji2i is

PEji2i ¼ Nð�a�1j00iM þ b�2j11iMÞj0iD: (9)

If j�1j ¼ j�2j, this describes a unitary (coherent) transfer
of the spin qubit to a topological qubit.
If the charge measurement following the gate sweep

instead indicates a filled dot, the resulting state is given
by the jd1i and jd2i components of Eq. (7):

ji2i ! N½ðaj�2j2j10iM þ b��
1�2j01iMÞj "iD

þ ðbj�1j2j10iM � a��
2�1j01iMÞj #iD�; (10)

which is an entangled two-qubit state. Transferring the
spin qubit to the Majorana system can still be ac-
hieved, most straightforwardly by reinitializing the
whole system and trying again. Alternatively, we can
measure, e.g., n1, whereupon the state in Eq. (10) col-
lapses to Nj10iMðaj�2j2j "iD þ bj�1j2j #iDÞ if n1 ¼ 1 and
Nj01iMðb��

1�2j "iD � a��
2�1j #iDÞ if n1 ¼ 0. Thus, we can

recover the initial spin qubit and try the transfer operation
again. The last option is to measure the dot spin, causing a
collapse to either the first or the second line in Eq. (10),
which has already affected a transfer of the spin qubit to a
topological qubit, but defined within the odd-parity sub-
space of the Majorana system (leaving the dot occupied,
but with a known spin projection).
Experimental considerations.—Importantly, the adia-

batic charge-transfer operations discussed above are insen-
sitive to environmental degrees of freedom coupling to
the dot charge [22]. To avoid involving quasiparticle ex-
citations of the TS or doubly occupied dot states, we need
� � �, U. In most quantum dot realizations U can be sev-
eral meV. The effective � in the topological phase depends
on the system at hand, but assuming �� 0:1–1 meV
would make �� 1–10 � eV sufficient. Adiabatic opera-
tion requires changing � on a time scale slower than 1=�
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(� 0:1–1 ns with the above estimate, which is fast com-
pared to typical spin qubit dephasing times [20,21]). In
fact, adiabatic gate sweeps on such time scales are com-
monly used in spin qubit readout [21] (spin-to-charge
conversion). In addition, there are experimental setups
where it is possible to control the tunnel couplings via
electrostatic gates [28] and � could then be changed to-
gether with � to more easily achieve j~�j � 1 at the end and
beginning of operations. A finite spin-splitting 	B on the
dot does not break the twofold degeneracy of the eigen-
states of (1) since the Majorana system still provides two
degenerate states. However, for ~� � �1, 	B splits off the
twofold degenerate ground state jg1;2i from the states

jd1;2i, which now have the character of spin-up or -down

along the field direction, and adiabatically filling the dot
will always result in the same state of the spin qubit. A
gate sweep which is nonadiabatic with respect to 	B (but
adiabatic with respect to �) still creates the above en-
tangled state, and therefore small splittings, 	B � �, are
acceptable. If the spin polarizations of the �1 and �2 modes
are not perfectly antiparallel, the fidelity of the qubit trans-
fer is reduced. In addition, the degeneracy of the ground
state is lifted, unless the relative phase across the junction
is tuned to exactly 
 [22], arg�1 � arg�2 ¼ 
.

Transferring spin qubits.—We now consider a modified
setup, involving a second quantum dot, see Fig. 2(b), and
use number states jn1n2iMjD1D2iD with obvious notation.
It is a simple generalization of the above arguments to
define operations PF2 and PE2, adiabatically filling and
emptying the second dot. Consider now the initial state
ji3i ¼ j10iMðaj " 0iD þ bj # 0iDÞ, i.e., a spin qubit in the
first dot and an empty second dot. Emptying the first dot
[see Eq. (9)] and then filling the second one gives

PF2PE1ji3i ¼ N½ða�1
���
2j01iM � b�2

���
2j10iMÞj0 "iD

þ ðb�2
���
1j01iM þ a�1

���
1j10iMÞj0 #iD�; (11)

where ��1;2 are the tunnel couplings between the Majorana

modes ��1;2 and dot 2. The spin on the second dot has now

been entangled with the Majorana system and measuring,
e.g., n2 affects a transfer of the spin qubit from the first to
the second dot. In principle this transfer can be long
ranged, but it is limited by the ability to initialize and
measure the nonlocal Majorana pairs �1, ��1 and �2, ��2.
This could, for example, be done in a network of one-
dimensional superconducting wires, where the Majorana
bound states can be moved around with gates [29].

Generating long-distance entanglement.—As a final ex-
ample, we start from ji4i ¼ j00iMj00iD, i.e., both dots are
empty, and fill first dot 1 and then dot 2

PF2PF1ji4i ¼ N½j11iMð��
1
���
2j ""iD � ��

2
���
1j ##iDÞ

þ j00iMð��
1
���
1j "#iD þ ��

2
���
2j #"iDÞ�: (12)

Simply by subsequently filling the two dots we have gen-
erated an entangled three-qubit state. If we now measure,

e.g., n2 we generate two spatially separated entangled spin
qubits. Note that if each dot has equal tunnel couplings to
both Majorana modes, j�1j ¼ j�2j and j ��1j ¼ j ��2j, the
spin qubits always end up in a Bell state. Thus, TS can
be used to affect quantum teleportation of electron spins.
Conclusions.—We have presented a method to transfer

quantum information between, and to entangle, topological
qubits and conventional spin qubits. This allows using
well-established experimental techniques for quantum
computations with spin qubits, while topological qubits
are used as quantum memories for long-time storage.
Alternatively, our proposal can be used to implement par-
tially protected universal topological quantum computa-
tion. In fact, braiding operations can implement a universal
set of one- and two-qubit gates, provided that certain
ancillary one- and two-qubit states can be prepared [13].
The required two-qubit state can be prepared in a topologi-
cally protected way [16], but the single-qubit state needed
is more problematic. In our setup, this (and any other
topological single-qubit state) can be prepared with high
accuracy by initializing the dot spin in the appropriate
angle relative to the Majorana spin polarization and then
emptying the dot, see Eq. (9).
In addition, we have shown that a topological supercon-

ductor can be used to transfer spin qubits between spatially
separated quantum dots, and to create long-distance entan-
glement between spin qubits. Thus, topological supercon-
ductors can act as buses for quantum information in
conventional qubit systems, or facilitate quantum telepor-
tation of electron spins.
We thank A. Reynoso for discussions.
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