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We propose a definition for topological order at nonzero temperature in analogy to the usual zero

temperature definition that a state is topologically ordered, or ‘‘nontrivial’’, if it cannot be transformed into

a product state (or a state close to a product state) using a local (or approximately local) quantum circuit.

We prove that any two-dimensional Hamiltonian which is a sum of commuting local terms is not

topologically ordered at T > 0. We show that such trivial states cannot be used to store quantum

information using certain stringlike operators. This definition is not too restrictive, however, as the

four dimensional toric code does have a nontrivial phase at nonzero temperature.
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Topological quantum computation [1,2] is one of the
most promising approaches for building a quantum com-
puter. The nonlocal encoding of quantum information in
the ground state subspace of topologically ordered systems
protects it against decoherence. Topological order is also
one of the most interesting current topics in condensed
matter physics, as models such as the Levin-Wen models
[3] provide a method for constructing novel phases.

One way of characterizing the nontrivial properties of
these phases is the following definition: a state is ‘‘trivial’’
if it is a product state, or if it can be transformed into a state
which approximates a product state using a local or
approximately local quantum circuit. A state is
nontrivial, or topologically ordered, otherwise. Despite
the usefulness of this definition in terms of circuits, we
do not have a similarly useful definition for states at
temperature T > 0.

Here, we propose an analogous ‘‘circuit definition’’ for
topological order at T > 0. Another method used
previously to study topological order at T > 0 is topologi-
cal mutual information [4,5], a generalization of topologi-
cal entanglement entropy [6,7]. While a nonzero
topological mutual information for T near zero is a useful
numerical signature of nontrivial phases [8], the use of
topological entropy can give different answers from the
circuit definition even for at T ¼ 0 [9], so both definitions
are useful to fully characterize a state. Also, it has been
shown that in many two-dimensional theories there exist
stringlike logical operators [10,11]. If these logical opera-
tors can be generated by dragging defects with energy
Oð1Þ, then, since there is a nonzero density of such defects
at T > 0, the information which would be topologically
protected at zero temperature will decohere rapidly at
T > 0 (though we emphasize that the defect density is
exponentially small in 1=T; as an experimental example,
fractional Hall conductance is accurately quantized [12]
even at T > 0). While this kind of ‘‘operational definition’’
is practically useful, the circuit definition here will lead

to similar operational results for all Hamiltonians which
are a sum of local commuting terms.
Conversely, we will show that the four dimensional toric

code [13] has topological order under the circuit definition
for sufficiently small T > 0 (this will not be a rigorous
proof since we will heuristically argue for the existence of
certain operators using previous results, but we then prove
that the existence of these operators is inconsistent with a
trivial state). One advantage of a definition using the
density matrix rather than the excitation above the ground
state is seen in a toy system in the Supplemental Material
which is topologically trivial at T ¼ 0 but nontrivial at
some small T > 0.
Topological order at zero temperature.—We start with

various previous definitions of topological order at T ¼ 0.
Topologically ordered Hamiltonians according to one defi-
nition have a ground state degeneracy that depends upon
the topology of the manifold, and the ground state subspace
obeys a property called the ‘‘disk axiom’’ or ‘‘TQO-1’’
[1,2,14–16], which we quantify by:
Definition 1.—Let L denote the system size and let P

denote the projector onto the ground state subspace. Let L�
denote some length smaller than L. Then, the ground state
subspace has (L�, �) topological degeneracy [17] if for any
operator O supported on a set of diameter smaller than L�
there is a scalar z such that

kPOP� zPk � �: (1)

Using circuits we can also define topological order for
systems with a unique ground state. Consider a unitary
quantum circuitU where the depth of the circuit multiplied
by the maximum range of each unitary in the circuit is
bounded by some range R. Note that for any operator O
supported on a set Z, UyOU is supported on the set of sites
within distance R of Z.
Definition 2.—Let c 0 be the ground state of the

Hamiltonian H. We say that the state c 0 is (R, �) trivial
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if there exists a unitary quantum circuit U with range R
such that jc 0 �Uc prodj � � for some product state c prod.

Certainly, every state is (L, 0) trivial, so we are only
interested in the case of R< L. Colloquiually speaking a
system will be trivial if it is (R, �) trivial for some � � 1
and for some R � L. We can relate the two definitions
[17]: if a system has (L�, �) topological degeneracy, then
no state c 0 in the ground state subspace is (R, �) trivial for
R< L�=2 and sufficiently small �, �. To see this, suppose
c 0 is (R, �) trivial. Then, the expectation of any operator
O in state c prod is close to the expectation of

hc 0jUOUyjc 0i. If O is supported on a single site,
UOUy is supported on a set of diameter less than L� and
so for such O, hc prodjOjc prodi � hUyc 1jOjc yc 1i. That
is, the subspace spanned by c prod and Uyc 1 has (1, �)

topological degeneracy for � ¼ Oð�þ �Þ. However, for �
sufficiently small compared to inverse system size, no such
state Uyc 1 exists since c prod is a product state.

Topological order at nonzero temperature.—We begin
by defining a ‘‘classical state of range R’’ �cl (this will
replace the use of a product state when we define T > 0
topological order) to be a state such that �cl ¼
Z�1 expð�HclÞ where Z is a normalization factor and Hcl

is a Hamiltonian which is a sum of terms all acting on sets
of diameter at most R and all of which are diagonal in a
product basis.

Definition 3.—A density matrix � is (R, �) trivial if it is
possible to tensor in additional degrees of freedom Ki on
each site, defining an enlarged space with Hilbert space
H i �Ki on each site, such that

j�� TrfKigðU�clU
yÞj � �; (2)

where the j . . . j denotes the trace norm (the trace norm of a
Hermitian operator is the sum of the absolute values of its
eigenvalues), where U is a unitary quantum circuit with
range R, and �cl is a classical state of range R (both U and
�cl are defined on the enlarged space), and where the trace
is over the added degrees of freedom Ki.

If we allow Hcl to be unbounded and we allow the
dimension of Ki to be unbounded, then this definition is
equivalent to saying that � is (R, �) trivial if it is, up to error
� in trace norm, equal to an incoherent sum of (R, 0) trivial
states: � ¼ P

aPðaÞjc trivðaÞihc trivðaÞj, for some probabil-
ity distribution PðaÞ. However, for some purposes one
might want to construct � using a bounded Hcl and a
bounded dimension on Ki.

Absence of topological order for two-dimensional
Hamiltonians with commuting terms.—We now show ab-
sence of topological order for any T > 0, under the above
definition, for two-dimensional Hamiltonians which are a
sum of commuting projectors. The proof is based on show-
ing that the densitymatrix can be approximatelywritten as a
weighted sum over density matrices of a system with
‘‘holes’’ in it as explained below, and then using results
from [18] towrite each such density matrix as a trivial state.

Consider a two-dimensional Hamiltonian H ¼ P
XQX,

where the terms QX are commuting projectors. Assume
that the terms in the Hamiltonian are local, so that each
projector QX is supported on some set X which has diame-
ter Rint which isOð1Þ. Further suppose that each site is in at
most Oð1Þ of such sets X, and for simplicity consider a
square lattice.
The density matrix is � ¼ Z�1 expð��HÞ, where Z is a

normalization and � ¼ T�1. Note that for any
projectorQX we have expð��QXÞ ¼

P
sX2f0;1gðð1� sXÞ�

expð��ÞI þ sXð1� expð��ÞÞðI �QXÞÞ, where we intro-
duce an additional variable sX, and sum over sX ¼ 0, 1
(this variable sX is unrelated to any local spin degrees of
freedom of the Hamiltonian). Thus,

� ¼ X

fsXg

ZðfsXgÞ
Z

�ðfsXgÞPðfsXgÞ; (3)

where the sum is over a set of variables sX, each
variable taking values 0 or 1, with PðfsXgÞ ¼Q

X½ð1� sXÞ expð��Þ þ sXð1� expð��ÞÞ�, and where

�ðfsXgÞ 	 ZðfsXgÞ�1
Y

X

ðð1� sXÞIþ sXðI�QXÞÞ; (4)

with ZðfsXgÞ�1 being a normalization. Note that �ðfsXgÞ is
maximally mixed on the ground state subspace of
HðfsXgÞ 	 P

XsXQX.
We will show that the density matrix �, for any given �,

is dominated by a sum over choices of sX in which there are
lots of holes in the lattice, where a hole corresponds to a
disk Y with radius greater than Rint, such that for any X
with X \ Y � ;, we have sX ¼ 0. See Fig. 1. (Note that the

0 1

234

5

6
7 8

FIG. 1. Illustration of holes in the lattice. The solid lines
indicate the division of the lattice into squares of size l�, and

only some of the squares are illustrated. Solid circles indicate
holes in the lattice, with one hole per square. Dashed lines
connect holes (dashed line extending outside the solid lines
connecting to only one hole are intended to indicate connections
to holes in other square which are not illustrated). Symbols
0; 1; 2; . . . indicate different subsets of the lattice with holes in
it, with the dashed lines indicating divisions between those
subsets.
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variables sX for X not intersecting such a disk Y are not
determined by the choice of holes, these variables may be
either 0 or 1). We divide the square lattice into large
squares of linear size l�, with l� exponentially large in �

as given in Eq. (8) and logarithmically large in system size.
We call a configuration ‘‘valid’’ if there is at least one hole
per square. We will show that for valid configurations the
density matrix �ðfsXgÞ can be expressed as a local unitary
with range R ¼ 2l� acting on a classical state and we

bound the contribution to � from invalid configurations.
Combining these results implies that the sum over sX
can be approximated by a local unitary acting on a
classical state (the error � arises from the invalid configu-
rations of sX).

Consider a given valid choice of sX. For such a valid
choice of sX, we draw an image such as in Fig. 1. As
mentioned, the terms sX may be zero even if X does not
intersect a hole. If a given choice of sX has more than one
hole per square, we only indicate one hole in the square,
choosing which one to take according to any arbitrary rule
(for example, the hole closest to the top left corner). We
draw dashed lines connecting the holes. The dashed lines
break the lattice outside the holes into regions labeled
0; 1; 2; . . . as shown. Then, HðfsXgÞ can be rewritten as

HðfsXgÞ ¼
X

ha;bi
Ha;b þ

X

a

Ha; (5)

where a and b label regions bounded by dashed lines, the
sum is over neighboring a, b, and Ha;b is supported on

regions a and b (define Ha;b ¼ Hb;a) and Ha is supported

on region a.
So, by coarse graining the lattice, the Hamiltonian is a

sum of commuting terms, each acting on at most two
regions. For any a, the terms Ha;b and Ha which are

supported on that region all commute with each other.
This allows us to find a decomposition of the Hilbert space
which greatly simplifies the description of the problem.
Equations (6) and (7), below differ slightly from lemma 8
of [18], but can be proven using the same tools of interac-
tion algebra [19] (see also [20]): decompose Ha;b as a sum

of product operators Ha;b ¼
P

�O
ab
a ð�ÞOab

b ð�Þ, where the

operators Oab
a ð�Þ, Oab

b ð�Þ are supported on a, b respec-

tively and the operators Oab
b ð�Þ are chosen from an ortho-

normal basis. Then, ½Oab
a ð�Þ; Oac

a ð�Þ� ¼ 0 for b � c, for
all �, �. Let Aab be the algebra generated by the set of
Oab

a ð�Þ for given b. The algebras Aab, Aac commute
for b � c.

Let H a denote the Hilbert space on region a. One way
for the two algebras to commute is simply that H a de-
composes into a tensor product of Hilbert spaces, and each
Aab acts on a different space. However, this is not the only
possibility. Suppose, for example, the Hamiltonians Ha;b

are all diagonal in some product basis. For example, con-
sider an Ising Hamiltonian with all terms involving only
operators Sz. Then all the Ha;b would commute, but we

would not have this tensor product decomposition.
However, we can decompose H a into a direct sum of

Hilbert spaces H �ðaÞ
a , and then further decompose each

such Hilbert space H �ðaÞ
a into a tensor product of spaces

H �ðaÞ
a!b giving

H a ¼
M

�ðaÞ
H �ðaÞ

a ¼ M

�ðaÞ
ðH �ðaÞ

a;a �O

hb;ai
H �ðaÞ

a!bÞ; (6)

where the product is over b that neighbor a, such that each
operator Ha;b can be decomposed as

Ha;b ¼
X

�ðaÞ;�ðbÞ
P�ðaÞ
a P�ðbÞ

b H�ðaÞ;�ðbÞ
a;b ; (7)

where P�ðaÞ
a is the operator on H a which projects onto

H �ðaÞ
a and H�ðaÞ;�ðbÞ

a;b acts on the subspace of H �ðaÞ
a �

H �ðbÞ
b given by H �ðaÞ

a!b �H �ðbÞ
b!a.

Define Qa;b to project onto the nonzero energy

states of Ha;b, so that the maximally mixed state

on the ground state subspace of HðfsXg is
ZðfsXgÞ�1

Q
ha;biðI �Qa;bÞ

Q
aðI �QaÞ, where ZðfsXgÞ is a

normalization factor. This state is a (2, 0) trivial state on the
coarse-grained lattice of regions because for any choice of
the variables �ðaÞ for each region a the projection of

�ðfsXgÞ onto the product of spacesH �ðaÞ
a is a product state

on the spaces H �ðaÞ
a!b �H �ðbÞ

b!a. Thus it is an (R, 0) trivial
state on the original lattice for R ¼ 2l�.

We now bound the contribution of invalid configura-
tions. Note that given any two sequences fsXg and fs0Xg
such that s0X 
 sX for all X we have Zðfs0XgÞ � ZðfsXgÞ.
Imagine breaking each large square of linear size l� into

small squares of size 2Rint on each side (this will not give
the best estimates but simplifies the proof), and let nC be
the maximum number of projectors that intersect any of
those small squares. Then, the sum of ZðfsXgÞPðfsXgÞ over
all fsXg such that there is a given configuration of holes in
those small squares with a total of k such holes is at least
equal to expð� ð2R2

intk�ÞÞ times the sum of the same

quantity over configurations with no holes. So, the sum
of Z�1ZðfsXgÞPðfsXgÞ over configurations with no holes in

any given square is bounded by ð1� expð�R2
int�ÞÞðl�=RintÞ2 ,

as follows by counting the number of configurations with
holes and without.
Pick

l� ¼ expðð2RintÞ2�ÞRint logðVÞ= logð�Þ; (8)

so ½1� expð� ð2RintÞ2�Þ�ðl�=RintÞ2 � �=V. Then, the con-
tribution of configurations such that at least one large
square has no holes to the trace in Eq. (3) is at most �.
Thus, for such an l� we can ignore such configurations and

restrict to a sum over valid configurations giving an ap-
proximation to � with error at most � in trace norm,
describing � as an incoherent sum over trivial states; if
desired, one can write this sum in the form of Eq. (2).
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Operational properties.—Consider first T ¼ 0. The four
dimensional toric code on a torus has a degenerate ground
state. There are surface operators Ux and Uz that act like
the Pauli operators �x and �z on a two-dimensional sub-
space of the ground state space. These operators anticom-
mute so that fUx;Uzg ¼ 0. Further, defining U0

x and U0
z to

denote the same operators translated a distance L=2 per-
pendicular to the given surfaces, the ground state expecta-

tion value of U0
xU

y
x equals 1, and similarly for U0

zU
y
z . At

nonzero temperature, the possibility of correcting errors
[13] implies that we can ‘‘thicken’’[21] those surfaces,
giving unitary operators Vx and Vz which are supported
within some distance (say, L=8) of the given surface which
have similar properties at T > 0 to the operator Ux and Uz

at T ¼ 0. In particular, we expect that for sufficiently
small T

tr ð�VxVzV
y
x V

y
z Þ � �1; (9)

tr ð�V 0
xV

y
x Þ � trð�V 0

zV
y
z Þ � 1: (10)

However, Eqs. (9) and (10), are inconsistent with having an
(R, �) trivial state for R sufficiently small compared to L
and � of order unity: if � is an incoherent mixture of states

c trivðaÞ, trð�V 0
xV

y
x Þ ¼ P

aPðaÞhc trivðaÞjV 0
xV

y
x jc trivðaÞi.

Then, since the separation between the supports of V 0
x

and Vy
x is greater than R, this equals

P
aPðaÞ�

hc trivðaÞjV 0
xjc trivðaÞihc trivðaÞjVy

x jc trivðaÞi.
For this sum to be close to 1 as in Eq. (10), a c triv chosen

at random must be, with probability close to 1, an approxi-
mate eigenstate of both Vx and Vz. However, this is incon-
sistent with Eq. (9). One can derive a similar inconsistency
result for certain defect creation processes similar to those
in [22].

Conversely, we can comment on this usefulness of a
trivial state for storing quantum information. To manipu-
late quantum information at T > 0, we need operators Vx

and Vy which act like the Pauli matrices on a single qubit,

as in Eq. (9). However, since Eqs. (9) and (10), are incon-
sistent with having a trivial state, we cannot have also
corresponding operators V 0

x, V 0
y. Further, such a trivial

mixed state can be no more useful for storing information
than a trivial pure state. Note that it seems too much to
hope for the converse statement (that a nontrivial state
is useful for storing quantum information), since even at
T ¼ 0 the Chern insulator [23] provides an example of a
circuit nontrivial state that has a unique ground state and so
cannot be a quantum memory.

Discussion.—We have proposed a definition of topologi-
cal order T > 0. While this definition is simple, it allows us
to make precise statements about how quantum informa-
tion can be manipulated in two-dimensional Hamiltonians
which are sums of commuting terms. This raises the ques-
tion of what can happen for arbitrary two-dimensional
Hamiltonians. In three dimensions, we expect that discrete

gauge theories are topologically trivial at T > 0 under the
circuit definition (see Supplemental Material [24]). A
much more interesting question is whether Haah’s code
[25,26], which avoids this gauge theory paradigm, is trivial
or not at T > 0. Using quasiadiabatic continuation [27], we
can relate the circuit definition at T ¼ 0 to whether or not
one can deform one local Hamiltonian into another while
avoiding a phase transition; however, an analogous ques-
tion for T > 0 is open (whether the absence of a phase
transition in thermodynamic quantities when lowering the
temperature from infinity to some finite Tf implies that the

density matrix at Tf is trivial). Finally, we ask if there is a

circuit definition for exotic critical points [28].
I thank D. Poulin for useful comments.
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