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Quantum tomography is the main method used to assess the quality of quantum information processing

devices. However, the amount of resources needed for quantum tomography is exponential in the device

size. Part of the problem is that tomography generates much more information than is usually sought.

Taking a more targeted approach, we develop schemes that enable (i) estimating the fidelity of an

experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best

matches the experimental data. Both these approaches yield a significant reduction in resources compared

to tomography. In particular, we demonstrate that fidelity can be estimated from a number of simple

experiments that is independent of the system size, removing an important roadblock for the experimental

study of larger quantum information processing units.

DOI: 10.1103/PhysRevLett.107.210404 PACS numbers: 03.65.Wj, 03.67.Ac

The building blocks for quantum computers have been
demonstrated in a number of different physical systems
[1–6]. In order to quantify how closely these demonstra-
tions come to the ideal operations, the experiments are
fully characterized via either quantum state tomography
[7] or quantum process tomography [8]. An important
advantage of these methods is that they require only simple
local measurements. The main drawbacks however are that
tomography fundamentally requires both experimental and
data postprocessing resources that increase exponentially
with the number of particles n [9].

It is important to realize that the exponential cost of
tomography is not a problem restricted to a large number of
qubits. For example, recent ion trap experiments character-
izing an 8 qubit state required 10 h of measurements,
despite collecting only 100 samples per observable [3].
Surprisingly, the postprocessing of the data obtained
from these experiments took approximately a week [10].
Under similar time scales, the characterization of a 16
qubit state would take years of measurements, and over a
century of data postprocessing. This is clearly a major
obstacle in the demonstration of working quantum com-
puters, even at sizes moderately larger than what has been
demonstrated to date.

Moreover, one of the key assumptions for the fault-
tolerance theorems of quantum computation is that the noise
on elementary components does not scale badly with the
system size [11]. Therefore, despite the fact that universal
quantum computation can be realized with one- and two-
qubit elementary operations, it is not sufficient to character-
ize small gates—larger systems may have significant noise
contributions from correlated sources as seen in recent ex-
periments [6]. The characterization of multiqubit states and
operations provides crucial information for the verification
of these assumptions, and therefore the development of large
quantum information processors.

Part of the problem with the usual approach is that
tomography often provides more information than what
is truly sought. Given an experiment that prepares a quan-
tum state represented by a density operator �̂, one usually
extracts a complete description for �̂ via quantum tomog-
raphy, and then compares this description to a theoretical
state �̂ by computing the fidelity Fð�̂; �̂Þ—a single
number, commonly used as similarity measure. As this
example illustrates, we often have an idea of what has
been realized in the laboratory, so we are interested in
asking for much less information—e.g., we only want to
know the distance to some particular theoretical target or to
learn the identity of the state or operation within a re-
stricted set of possibilities.
In this Letter, we develop targeted approaches to directly

extract the information of interest. Our main results, sum-
marized at Table I, show that it is possible to efficiently
characterize a large class of states and operations—
including some that are universal resources for quantum
computation—without resorting to tomography and using
only local measurements and the preparation of product
states. Our methods apply to discrete variable systems such
as qubits, as well as continuous variable systems such as
oscillators. We consider two types of characterization:
certification and learning.
Learning consists of identifying the theoretical descrip-

tion from a restricted set of possibilities that best matches
the experimental data. There exists many classes of
‘‘variational’’ states in physics that can be specified with
a small number of parameters. We provide examples where
these parameters can be extracted directly from
experiments, circumventing tomography and hence drasti-
cally reducing the complexity.
Certification consists of estimating the fidelity between

an experimental device and some theoretical target.
We demonstrate that certification always requires
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drastically less resources than full tomography—in
some important cases, it is an exponential reduction in
resources. Even in the worst case, our scheme offers
four significant advantages for the characterization of
quantum states (equivalent statements hold for quantum
operations): (i) Its computational cost is bounded by n24n,
compared to 43n required for the simplest tomography
procedure based on pseudoinverses. (ii) The number of
distinct experimental settings it requires is constant—
independent of the system size and depending only on
the desired accuracy of the estimate—compared to the
4n distinct experiments needed by tomography, or the
Oðn2nÞ settings required by compressed sensing tech-
niques [16]. (iii) The total number of measurements
(counting repeated measurements used to statistically es-
timate expectation values) of our scheme is bounded by
Oð2nÞ, which is at least a quadratic improvement over what
is required by full tomography. (iv) The data postprocess-
ing of our scheme is trivial, while the correct method of
processing tomography data is a matter of current debates
and different methods produce significantly different re-
sults [10].

The rest of this Letter is structured as follows. In the
next three sections, we describe the state certification
scheme for qubits, show how it extends to continuous
variable systems, and the certification of quantum pro-
cesses. Then, we present concrete examples drawn from
Table I.

Monte Carlo state certification.—To estimate the fidelity
to some theoretical pure state �̂, we use the fidelity

Fð�̂; �̂Þ ¼ tr�̂ �̂ ¼ X
i

�i�i

d
¼ X

i

�2
i

d

�i

�i

; (1)

where �i ¼ tr�̂P̂i, �i ¼ tr�̂P̂i, d is the dimension of the

Hilbert space, and P̂i is some orthonormal Hermitian op-

erator basis satisfying trP̂iP̂j ¼ d�ij. For a system com-

posed of n qubits, the P̂i could be the 4n Pauli operators
obtained by taking tensor products of the Pauli matrices
and the identity. Defining the relevance distribution

PrðiÞ ¼ �2
i

d , we can rewrite the fidelity as Fð�̂; �̂Þ ¼P
i PrðiÞ �i

�i
, where the sum is taken over only the i with

�i � 0. This expression leads to an experimental proce-
dure to estimate the fidelity based on Monte Carlo methods
as follows: one generates N random indices i1; i2; . . . ; iN
following the relevance distribution PrðiÞ and estimates

�ik ¼ hP̂iki�̂, the experimental expectation value of the

observable P̂ik . With high probability, the fidelity is close

to 1
N

P
N
k¼1

�ik

�ik

with an uncertainty that decreases as 1ffiffiffi
N

p . The

total number of distinct experimental settings is at most N,
independent of the system size.
There are two important caveats to this technique: (C1)

Generating an index i according to the relevance distribu-
tion PrðiÞ can in general require an exponential amount of
computational resources. (C2) Each�ik is estimated within

some finite accuracy. To estimate the fidelity with accuracy
� therefore requires repeating the measurement of Pik

roughly ð��ikÞ�2 times, which in the worst case grows

exponentially with the number of qubits.

TABLE I. Complexity of the characterization of various states and processes. Entries with asterisks are efficient, i.e., require
resources that grow at most polynomially with the number of qubits n. The sampling column gives the complexity of the classical
processing required to sample from the relevance distribution (C1). The fluctuations column gives the number of measurements
required to suppress statistical fluctuations when evaluating the fidelity (C2). The learning column gives the total number of
measurements (including repetitions of the same measurement setting) required to learn the state within a restricted set; the classical
processing is always a polynomial of that number. When both fidelity estimate and learning are efficient, it is not necessary to assume
that the state belongs to a restricted set as fidelity testifies of that assumption. Stabilizer states, Clifford gates, local Hamiltonians and
Lindbladians are discussed in the main text. The W state has often been used as an experimental benchmark, e.g., [3]. The jtni state
plays a key role in linear optics quantum computation [12]. Matrix product states (MPS) accurately describe ground states of 1D
quantum systems [13]. An important example of a process with MPS Choi matrix is the approximate quantum Fourier transform [14],
key component of Shor’s factoring algorithm. Question marks indicate open problems, but they can be no worst than the general states
and operations. All schemes require only single qubit measurements, except for stabilizer state and Clifford process learning [28,29].

Certification

Sampling (C1) Fluctuations (C2) Learning

States Stabilizer OðnÞ� Oð1Þ� polyðnÞ
W OðnÞ� OðnÞ� OðnÞ�
jtni OðnÞ� OðnÞ� OðnÞ�
General MPS OðnÞ� ? OðnÞ� [15]

General pure state Oðn222nÞ Oð2nÞ Oð26nÞ
Processes Clifford Oð1Þ� Oð1Þ� polyðnÞ

MPS Choi matrix OðnÞ� ? OðnÞ�
General unitary Oðn224nÞ Oð22nÞ Oð212nÞ

Evolution Local Hamiltonian NA NA OðnÞ�
Local Lindbladian NA NA OðnÞ�
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These are important limitations, and as a consequence
our method will not scale polynomially for all quantum
states and operations, but nevertheless always does signifi-
cantly better than tomography. In addition, there are im-
portant classes of states and operations which avoid these
two problems (see Table I and the Supplemental Material
[17] for complete details).

Continuous variables systems—For infinite dimensional
systems, such as a harmonic oscillator or a single optical
mode in a cavity, it is more convenient to describe a state �̂
by its Wigner functions W�̂ð�Þ [18] (other indicator func-
tions could also be used). Equation (1) becomes

Fð�̂; �̂Þ ¼ 1

�

Z
C
d2�pð�ÞW�̂ð�Þ

W�̂ð�Þ ; (2)

where the relevance density pð�Þ ¼ W2
�̂ð�Þ is defined as

the square of the Wigner function of the theoretical state,
whose purity guarantees once again that pð�Þ is well
defined as a probability density. The Wigner function of
the experimental state �̂ can be measured by interactions
with an atom and measurements of the atom’s state [19].
Points in the complex plane can be selected according
to pð�Þ using simple methods such as rejection sampling.
As an example, we simulated this proposed method
to estimate the fidelity between a quantum superposition
of two harmonic oscillator states—a ‘‘cat’’ state
1ffiffi
2

p ðj�i þ j � �iÞ—and the probabilistic mixture of those

two classical states. For the given choice of parameters,

this fidelity is 1
2 ð1þ e�2�2Þ � 0:5, and Fig. 1 clearly

demonstrates a close agreement between the Monte Carlo
estimate and the exact theoretical value, as the absolute
error decreases like the square-root of the number of
samples of the Wigner function. As expected, the error in

the fidelity estimate does not depend on the state itself (e.g.
average number of photons, amplitude, etc.) but only on
the number of samples. We emphasize once again that no
estimate of the Wigner function of the experimental state is
ever made, so there is no need for maximum-likelihood fits
to the data, or Radon transforms.
Monte Carlo process certification.—The Choi-

Jamiołkowski isomorphism [20] associates to every
quantum operation E on a d-dimensional space a density
operator �̂E on a d2-dimensional space via �̂E ¼
ðid � EÞðj�ih�jÞ where j�i ¼ 1ffiffi

d
p Pd

i¼1 jii � jii and id is

the identity operation. As with state certification, our
goal is to compare a target unitary U to its experimental

realization fU. A good figure of merit in that case is the

average output fidelity �FðU;fUÞ, defined as the fidelity

between the output states produced byU andfU, averaged
uniformly over all pure input states. It can be shown that

�FðU;fUÞ ¼ dFð�̂U;�̂ ~UÞþ1

dþ1 [21], reducing the problem of

comparing two processes U and fU to the problem of
comparing two states �̂U and �̂eU. This problem is solved

by the Monte Carlo state certification presented above.
While this derivation makes use of the maximally en-

tangled state j�i, the experimental realization of the pro-
tocol requires only the preparation of product states. A
direct implementation of the quantum Monte Carlo state
certification would prepare a maximally entangled state

j�i, apply fU to half of the system, and then measure
random Pauli operators on all qubits. A more practical
approach consists of preparing the complex conjugate of
random product of eigenstates of local Pauli operators
(corresponding to the resulting state after half of the
entangled state is measured destructively), applying the

transformation fU to the system, and finally measuring a
random Pauli operator on each qubit. This simplification,
based on the identity ðj�ih�j � idÞj�i ¼ j�i � j�i�, gen-
erates the same statistics as the direct scheme [22].
Computation via teleportation.—Some of the most

promising approaches to universal and scalable quantum
computation are teleportation-based quantum computation
[23] and measurement-based quantum computation [24].
Both these approaches rely heavily on the preparation of
stabilizer states [25] and the application of quantum op-
erations known as the Clifford group [23], which map
stabilizer states to stabilizer states. Stabilizer states are
also important for quantum computation in general be-
cause of their close relationship to a large class of quantum
error correction codes known as stabilizer codes. Many of
the experimental demonstrations of state preparation to
date have been of stabilizer states, such as states encoded
into stabilizer codes [2], cluster states [4], and the GHZ
state j00 � � � 0i þ j11 � � � 1i [5,6].
We first describe how to certify these states and opera-

tions. Stabilizer states are defined to be þ1 eigenstates of

FIG. 1 (color online). (a) Wigner function representation of a
harmonic oscillator in the superposition jc i ¼ j�i þ j � �i for
� ¼ 3, (b) 103 samples of points in the complex plane drawn
according to the relevance density of jc i, (c) Wigner function
representation of a harmonic oscillator in the incoherent mixture
of j�i and j � �i, corresponding to the preparation of �̂,
(d) absolute error in successive estimates of the fidelity
Fð�̂; �̂Þ for 5 different runs with 103 samples each.
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some set of commuting Pauli operators Ŝj that generate the

stabilizer group, i.e., Ŝjjc i ¼ jc i for all j ¼ 1; . . . ; n. It

follows that PrðiÞ ¼ 1=d if either of�P̂i is in the stabilizer
group and 0 otherwise. Sampling from PrðiÞ thus amounts
to generating an index i uniformly between 1 and d,
avoiding the problem associated with caveat (C1). For
the same reasons, �2

i ¼ 1 for all i with PrðiÞ � 0, so that
the uncertainty in the estimation of �i is not amplified,
avoiding the problem associated with caveat (C2). It also
follows that the fidelity Fð�̂; �̂Þ to a stabilizer state �̂ can
be estimated with error � using N ¼ Oð 1

�4
Þ experiments

involving only local projective measurements, indepen-
dently of the system size and without any prior knowledge
of the experimental state �̂. Since this result relies only on
local measurements, it can immediately be generalized to
states which are locally equivalent to stabilizer states.

This result carries over directly to the certification of
Clifford operation because their Choi-Jamiołkowski den-
sity operators are stabilizer states. In the case of Clifford
transformations similar results can be obtained using
‘‘twirling’’ experiments [26] or by the selective measure-
ment of matrix elements of the Choi matrix [22], although
the Monte Carlo approach described here generalizes to
other cases.

While operations in the Clifford group are not sufficient
to perform universal computation [23], single-qubit rota-
tions can be used to reach universality, and these can be
certified efficiently thanks to local equivalence of either
operations (if the rotation is applied directly) or state
preparation (if the rotation is applied via ‘‘magic state’’
teleportation [23,27]).

Stabilizer states can also be learned efficiently, as
pointed out by Aaronson and Gottesman [28], although
the known method for efficient stabilizer learning requires
collective measurements. Aside from the direct general-
ization of the stabilizer approach, Clifford group opera-
tions can be learned efficiently [29] if one has access to
Bell measurements and the inverse of the operation being
learned—or, equivalently, applying the algorithm by
Aaronson and Gottesman to appropriately chosen output
states from the unitary in question. The problem of per-
forming these tasks efficiently with strictly local measure-
ments and without the need for the inverse remains open.

Local Hamiltonians and Lindbladians.—Models of
universal quantum computation exist where the idea of
discrete gates is not a natural fit. Instead, the system
evolves in a continuous way, governed by some dynamical
equation @

@t �̂ ¼ G�̂. The most direct way to determine how

accurately these dynamics can be realize is to estimate the
time evolution generator G of the system, and explicitly
check how it compares against the ideal target generator.
Important examples include local Hamiltonians and
Lindbladians that are universal for adiabatic quantum
computation [30] and dissipation-driven quantum compu-
tation [31], respectively.

In what follows we demonstrate how to learn such local
G using only (i) the preparation of initial product states,
(ii) the simultaneous measurement of a constant number
of single-qubit operator, (iii) a number of experimental
settings that grows linearly with the system size, (iv) and
classical postprocessing of complexity n3 (inverting an
cn� cn matrix for some constant c); improving on [32].
Consider the case of coherent evolution generated by

some Hamiltonian H. For a short time t, the expectation

value of any observable Â evolves as

hÂðtÞi�̂ � trÂ �̂ ¼ ith½Ĥ; Â�i�̂ þOðkĤk2t2Þ: (3)

By experimentally measuring this expectation value, we
obtain one linear constraint on the Hamiltonian. Varying

over different observables Âi and initial states �̂j, we

obtain more linear constraints that we can write as Wij ¼
hÂiðtÞi�̂j

� trÂi�̂j ¼ ith½Ĥ; Âi�i�̂j
where we have dropped

the higher order terms OðkĤk2t2Þ. Writing Ĥ in an opera-

tor basis Ĥ ¼ P
lhlP̂l, we obtain the linear equationWij ¼P

lTij;lhl where Tij;l ¼ ittr�̂j½P̂l; Âi�. The Hamiltonian can

be learned by inverting this linear equation [32].
There are in general a number important caveats to this

approach, although all of these disappear when the
Hamiltonian is local, which is nonetheless sufficient to
achieve universal quantum computation [30,31].
The Lieb-Robinson bound [33] shows that only the

Hamiltonian ĤR in a region R a distance d � vt of the

local observable Â contributes to its evolution, i.e.,

eiĤtÂe�iĤt � eiĤRtÂe�iĤRt (for details of the proof see
the Supplemental Material [17]). This fact solves all the
problems associated to the proposal of [32]: (i) The error

OðkHk2t2Þ appearing in Eq. (3) becomes OðkHRk2t2Þ ¼
OðkÂk2t4Þ, independent of the system size. Thus, it is not
necessary to decrease the evolution time t as the system
size increases to achieve a given accuracy. (ii) Because the
Hamiltonian is local, the number of nonzero terms hl is
proportional to the number of particles in any finite dimen-
sion. Thus, in the linear equation for Wij, the range of the

index l increases only linearly with the number of particles,
as opposed to the exponential growth for generic
Hamiltonians. (iii) Because the dynamics is local,
Tij;l ¼ Tij0;l when �̂j and �̂j0 differ only outside a region

of radius k away from the local observable Âi. In addition,
the T become linearly dependent—and thus redundant—
when the input states are linearly dependent. For each

observable Âi, we only need to vary the initial state locally,
so the total number of observable-state pairs (ij) grows
linearly with the number of particles. Thus, learning the
Hamiltonian—or equivalently the hl—amounts to
inverting the linear-size linear equation Wij ¼

P
lTij;lhl.

(iv) Product input states form a complete operator basis, so
they are sufficient to gain all information about the

Hamiltonian. Thus trÂi�̂j can be easily computed since

PRL 107, 210404 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 NOVEMBER 2011

210404-4



Âi is local and �̂j is a product state. The quantity

tr�̂j½P̂l; Âi� can also be evaluated efficiently because the

commutator of two k-local operators is at most 2k local,
and �̂j is a product state.
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