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‘‘Rainbow trapping’’ has been proposed as a scheme for localized storage of broadband electromagnetic

radiation in metamaterials and plasmonic heterostructures. Here, we articulate the dispersion and power

flow characteristics of rainbow trapping structures, and show that tapered waveguide structures composed

of dielectric core and metal cladding are best suited for light trapping. A metal-insulator-metal taper acts

as a cascade of optical cavities with different resonant frequencies, exhibiting a large quality factor and

small effective volume comparable to conventional plasmonic resonators.
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Slow electromagnetic waves, first studied in systems
with atomic coherence at low temperature [1], have been
investigated in recent years at room temperature via light
dispersion in solid state media such as photonic crystals
[2,3]. However, most of these systems operate only at
specific resonant frequencies, and so broadband light trap-
ping remains a great challenge. Tsakmakidis et al. first
proposed ‘‘rainbow trapping’’ in which a wide wavelength
range of electromagnetic fields can be trapped in tapered
waveguide structures composed of negative index core and
dielectric cladding (insulator-negative–index-insulator, or
INI) which exhibits a negative Goos-Hänchen effect [4].
Recently, researchers have determined that such a trapping
mechanism is also applicable for transverse magnetic (TM)
waves in insulator-metal-insulator (IMI) and metal-insula-
tor-metal (MIM) waveguide tapers under certain material
property conditions [5,6]. However, to date the question of
how much light a rainbow trapping structure can actually
store and how the light escapes from it have not been
addressed.

In this Letter, we study the fundamental mode conver-
sion and loss mechanisms of linearly tapered INI, IMI, and
MIM rainbow trapping structures and show that MIM
rainbow trapping structures are superior to the others in
terms of trapping performance. Assuming a Drude disper-
sion relation for the cladding metal, we specify the fre-
quency range and the structural dimensions needed to
achieve rainbow trapping and calculate the quality factor
Q and the effective mode area Aeff as quantitative measures
of light trapping and localization. We perform a transfer
matrix analysis [7] to examine the behavior of the guided
modes in the structure, and confirm the results with full-
wave finite difference time domain (FDTD) and finite
element method (FEM) simulations. This Letter is organ-
ized as follows: Fig. 1 illustrates the mode conversion
properties of IMI, INI, and MIM tapers. We then compare
the energy density distributions and modal amplitudes
achievable for IMI TM0 modes and MIM TM2 modes, as
indicated in Fig. 2. For MIM tapers, we then investigate the
critical taper thickness for mode conversion and the quality

factor achievable for the quasibound mode as a function of
frequency. Finally, we explore the properties of rainbow
tapers as a function of taper angle, as illustrated by Fig. 4.
The dispersion relations of eigenmodes in rainbow trap-

ping systems are exotic. Figures 1(d)–1(f), respectively,
show the effective indices neff of IMI TM0 modes and TM2

modes in INI and MIM tapers as a function of core thick-
ness �. For all three cases, the modes consist of two
branches: the energy velocity, vE ¼ R

Szdx=
R
udx, where

u and S are the time-averaged energy density [8] and
Poynting vector, and the phase velocity are parallel for
one branch (jfi) and antiparallel for the other (jbi), as seen
in Figs. 1(g)–1(i). Since each mode can propagate along
either the þz or �z direction, there exist a total of four
orthogonal eigenmodes jfþi, jf�i, jbþi, and jb�i. The
letters f and b identify the branch and the signs þ and �
indicate the direction of energy propagation. If the system
is adiabatic enough to neglect the coupling between these
modes and higher order modes, it is possible to describe the
system as a linear superposition of these four basis modes.
The jfi and jbi are degenerate at a certain core thickness
�d, and the dispersion relations split as� deviates from�d.
It is worth noting that the direction of power flow through
the cladding is opposite to the flow through the core and
their magnitudes become equal at � ¼ �d, which results in
zero energy velocity. The conditions for having degeneracy
points are specified in Table I [5,6].
Many simulation results have shown that it is impossible

to trap light to a complete standstill even under the as-
sumption of lossless materials [5,9,10]. This results from
the coupling between the eigenmodes due to the funda-
mental nonadiabaticity near� ¼ �d. More specifically, the
slow core thickness variation condition [11], d�=dz �
�k0�n=�, where k0 is the wave number in the free space
and �n is the effective index difference between eigen-
modes, can never be fulfilled throughout the entire struc-
ture because �n ¼ 0 at the degeneracy point. In fact, the
degeneracy point connects jf�i to jb�i. Mechanisms for
power flow into and out of rainbow trapping structures are
schematically described in Figs. 1(a)–1(c). An incident
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IMI TM0 jfþi is converted to the other branch jb�i at
� ¼ �d and escapes the structure. In an INI structure, an
incident photonic jbþi is converted to jf�i at � ¼ �d and
couples into a backward propagating radiative mode at
� ¼ �r, where neff coincides with the index of the clad-
ding. An incident MIM photonic jfþi undergoes similar
mode conversion at the degeneracy point but the converted
jb�i is reflected to jbþi at the mode cutoff � ¼ �c, and
converted back to jf�i, which finally escapes the struc-
ture. The reflection at � ¼ �c, where the energy velocity
also vanishes, makes electromagnetic waves reside longer
in the taper segment between the degeneracy point and the
mode cutoff.

One can intuitively sketch out the mode conversion
mechanism in an analogous ray optic picture. A light ray
incident upon a core-cladding interface at an angle of
incidence�0 undergoes total internal reflection with nega-
tive Goos-Hänchen shift, propagates in the core, and strikes
the other interface with angle �0 � �, where � is the
taper angle. Since the successive angle of incidence �N ¼
�0 � N� decreases as the number of bounces N increases,
the lateral propagation of the ray between two consecutive
Goos-Hänchen shifted internal reflections also decreases,
crosses zero, and becomes negative, which corresponds to
our mode conversion description at � ¼ �d. For INI struc-
tures, the light ray escapes the structure in the form of

radiation once �N reaches the angle of escape �r deter-
mined by Snell’s law [Fig. 1(b)]. Therefore a ray can bounce
M times, whereM is the largest integer satisfying�M >�r

[i.e.M� ð�0 ��rÞ=�]. On the other hand, in MIM struc-
tures, the light ray is always totally reflected at the interface.
Therefore �N can be further reduced and cross zero at
the mode cutoff (� ¼ �c) [Fig. 1(c)]. From there, the ray
travels back in the þz direction again and then repeats
the same process that we described previously but in the
reverse manner. The number of internal reflections is thus
M� 2�0=�, which is greater than that of the INI case.
We perform a transfer matrix analysis to quantitatively

understand the behavior of the modes in the IMI and MIM
rainbow trapping structure by computing the amplitude of
the eigenmodes. The mode amplitudes are normalized such
that jaj2 ¼ jR dxðE�HÞz=2j, where E andH are electric

and magnetic fields of the corresponding mode. Note that,
for modes having real propagation constants, jaj2 is simply
the time-averaged power flow. Figure 2(c) shows the mode
amplitudes of IMI TM0 modes in the steady state.
Corresponding to our previous description, afþ and ab�
are of similar magnitude whereas af� and abþ are very

small, which indicates mode conversion from jfþi to
jb�i, with other modes suppressed. On the other hand,
for MIM TM2 mode trapping, jafþj � jaf�jwhere�> �c

and jbþi and jb�i are excited only in the taper section
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FIG. 1 (color online). Schematic descriptions of (a)–(c) mode conversion mechanism, (d)–(f) neff , and (g)–(i) vE of IMI ("I ¼ �8:5,
"II ¼ 10) TM0, INI ("I ¼ �I ¼ �3, "II ¼ �II ¼ 1) TM2, and MIM ("I ¼ 10, "II ¼ �1) TM2 modes versus �k0. In (d)–(f), the real
part and imaginary part of neff are represented as solid and dashed curves, respectively. Lossless and lossy (Imf"g=Ref"g ¼ 0:03 for
metal and Imf"g=Ref"g ¼ Imf�g=Ref�g ¼ 0:03 for negative index metamaterial) cases are plotted as thin blue and thick red curves,
respectively, in (d)–(i). Dotted vertical lines indicate the degeneracy point �d, radiation point �r, and the mode cutoff �c.
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� 2 ð�d; �cÞ and decay as they become evanescent
[Fig. 2(d)]. Because of the simultaneous excitation of
jfþi, jf�i, jbþi, and jb�i, an MIM structure can store
large amounts of energy which makes them the best can-
didates for trapping light. Although an IMI structure can
perform as a compact mode converter, its light trapping
capability is inferior to the MIM trapping structure because
it does not exhibit mode cutoff [Figs. 2(a) and 2(b)].
Because of the inevitable radiation loss, in addition to the
difficulties in fabrication, INI rainbow trapping seems less
attractive compared with the other approaches. Therefore,
we focus our attention on MIM rainbow trapping in the rest
of the discussion.

Although rainbow trapping structures are open systems,
they can be considered as a series of optical cavities having
different resonant frequencies since they can localize
broadband light in tapered sections of different width
depending on frequency. Assuming a dispersionless
dielectric core and a Drude metal cladding of "IIð!Þ ¼
1�!2

p=ð!2 þ i�!Þ where !p and � are the plasma fre-

quency and the damping constant, respectively, TM2

modes at frequency !=!p 2 ðð0:2430"I þ 1Þ�1=2; 1Þ can
be trapped in the structure (Table I). We plot �d, �c, and nd
as functions of ! in Fig. 3(b). As a measure of trapping
performance, we calculate the quality factor Q from elec-
tric and magnetic field distribution in the steady state. Q is
defined by!U=P where P is the power dissipated andU is
the energy stored in the rainbow trapping structure (z > 0)
having the entrance thickness �0 [see inset of Fig. 3(a)].
Here, �0 is chosen to be maxf�cð!Þg to ensure the struc-
ture to be functional for the entire target frequency range.
Recognizing that the input power is equal to the dissipated
power in steady state, and that the only incoming guided

mode at the entrance (z ¼ 0) is jfþi, P is equal to the
incoming power carried by jfþi. Since the wave propa-
gates deeper along the taper,Q increases as! increases for
a fixed taper angle � ¼ 2� [Fig. 3(d)]. It is worth noting
that Q is directly proportional to the light trapping time
� ¼ Q=!. For instance, for � ¼ 2� and !=!p ¼ 0:6, � is

calculated to be around 33 periods which is quite a long
time since the distance between the entrance and the
degeneracy point is only about 1.5 effective wavelengths.
We confirm that � corresponds to the actual signal trapping
time by measuring the time it takes by a pulse to escape
a rainbow trapping structure by FDTD simulations.
Interestingly, the signal trapping time does not vary sig-
nificantly from the value of the lossless case but only
causes the outgoing signal to attenuate as � becomes
larger.
When material loss is present (� � 0), the degeneracy

between jfi and jbi is removed and vE thus has finite value
everywhere [Fig. 1(f)]. However, the overall power flow
and optical dispersion characteristics—vE drops down
significantly and the effective indices of jfi and jbi get
very close to each other around � ¼ �d—are preserved.
Thus the previously described light trapping mechanism
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FIG. 2 (color online). Energy density distribution uðx; zÞ of (a) IMI ("I ¼ �8:5, "II ¼ 10þ 0:01i) TM0 and (b) MIM ("I ¼ 10,
"II ¼ �1þ 0:001i) TM2 modes. Boundaries between core and claddings are indicated by white solid lines. (c),(d) Mode amplitudes of
jfþi (red solid), jf�i (blue dashed), jbþi (orange dotted), and jb�i (purple dash-dotted) modes as functions of core thickness in the
(c) IMI and (d) MIM structures. Dotted vertical lines indicate �d and �c.

TABLE I. The conditions for rainbow trapping. �" ¼ j"II="Ij
and �� ¼ j�II=�Ij where the subscripts I and II denote the

core and the cladding, respectively. For INI TE modes, replace
�" $ ��.

INI, NIN MIM IMI

TM0:�" >maxf1; ��1
� g TM1:1<�" < 1:3510 TM0:�" > 1

TM1:1<�" < ��1
� TMm�2:

TMm�2:�"�� < 1 ��1=2
" þ atanð��1=2

" Þ> m�
2
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is still valid except at very high loss. For a fixed frequency,
Q is found to be almost inversely proportional to the
taper angle. As � ! 0, Q becomes limited by Ohmic loss
inside the metal alone, asymptotically approaching

c=2vEImfnfþeff ð� ¼ �0Þg [Fig. 4(b)].
We also calculate the effective area Aeff for our two-

dimensional rainbow trapping structure as a measure of
light localization, Aeff ¼ U=maxfuðx; zÞg, where (x, z)
reside in the dielectric core where an object may be placed
to interact with the field. By conservatively assuming a

diffraction-limited height Ly ¼ �0=2nI, the effective vol-

ume can be approximated as Veff � Aeff�0=2nI. Figure 4(d)
displays Q=Veff of TM2 modes as a function of inverse
angle ��1. When � ¼ 0, Q=Veff monotonically increases
since adiabatic condition holds up to � closer to �d as �
gets smaller. In the presence of material loss, the effect of
rainbow trapping and propagation losses compete.
The Q=Veff is dominated by propagation loss for very
small taper angle whereas the rainbow trapping effect
dominates it for relatively large �, because propagation
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loss exponentially increases as a function of propagation
distance. Therefore Q=Veff has a maximum where both
effects are balanced. For greater values of �, the optimal �
increases to compensate higher propagation loss.

We note thatTM1modes at!=!p2 ðð1:3510"Iþ1Þ�1=2;

ð"Iþ1Þ�1=2Þ can also be trapped in the MIM taper struc-
tures. The parameters �d and �r of TM1 modes have
similar order of magnitude to those TM2 modes, implying
that both type of modes can be trapped in a single struc-
ture [Fig. 3(a)]. However, unlike TM2 or higher order
photonic modes, TM1 modes are mostly antisymmetric
superpositions of surface plasmon polariton modes. Their
field intensity is greatest at the metal/dielectric interfaces
and exponentially decays as a function of distance from
the interface, making them slow compared to the photonic
modes and very sensitive to changes at the vicinity of the
surface. Because of the small energy velocity, Q of TM1

modes tends to be much higher than that of photonic
modes and even diverges when ! approaches to surface
plasmon resonance frequency if the metals are lossless
[Fig. 3(c)]. Moreover, since the energy of TM1 modes is
highly confined at the interfaces, they can have very small
Aeff well below the diffraction limit [Fig. 4(c)]. However,
because of the significant energy penetration into the metal,
TM1 modes are much more sensitive to the material loss
than TM2 modes, making it difficult for them to exhibit a
rainbow trapping effect for the realistic damping constant
�=!p � 0:01 [12]. They also undergo non-negligible re-

flection due to the tapering. This adds distinctive Fabry-
Perot type oscillations as a function of the taper length, as
illustrated in Figs. 4(a) and 4(c). The TM1 modes might not
be suitable for signal processing since the shape of a signal
can be significantly distorted by this reflection.

In order to exhibit the rainbow trapping effect for a wide
range of frequencies, dielectric core materials should have
sufficiently high index and the metal cladding should have
low Ohmic loss and simultaneously satisfy the conditions
specified in Table I. In the optical frequency range, MIM
rainbow tapers with Ag [12] as the metallic layer and
GaP [13] as the dielectric are able to trap TM1 modes
for wavelengths ranging from 540 to 590 nm at � of
22–48 nm. For a Ag=GaP=Ag taper of �0 ¼ 50 nm and
� ¼ 5�, we obtain Q� 30–60 and Aeffð�0=nIÞ�2 �
0:01–0:1 throughout the target wavelength range (see
Supplemental Material [14]). One could also trap infrared
light by utilizing polar dispersive materials that support
phonon-polariton modes as negative permittivity clad-
dings. For instance, SiC=Si=SiC heterostructures are able
to localize TM2 modes in the infrared regime near the SiC
phonon-polariton resonance (� 10:5 �m) where the per-
mittivity of SiC varies from positive to negative with very
small damping [15].

In summary, rainbow trapping structures composed of
insulating core and metal claddings offer better trapping
performance compared to INI or IMI structures. We have

also shown that MIM rainbow trapping structures can
exhibit large broadband Q and Q=Veff comparable to those
of existing plasmonic cavities [16,17]. It should also be
possible to reduce the propagation loss by configuring the
taper profile of rainbow trapping structures to be other than
linear. Rainbow trapping structures may also find applica-
tion as materials that surpass the classical light trapping
limit [18] and which enhance the efficiency of solar cells
by trapping different frequency bands of the solar spectrum
into semiconductors of different band gaps arrayed along
the taper in order to maximize the solar absorption. Further
investigations may also lead to applications in optical
signal processing by utilizing the electro-optic effect.
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