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GISC, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
(Received 11 August 2011; published 8 November 2011)

We consider the adsorption of fluid at a cylinder protruding from a flat substrate. For small contact

angles �, a liquid drop condenses at the base, the size of which is determined by macroscopic arguments.

The adsorption exhibits scaling behavior related to a number of phase transitions and, for systems with

short-ranged forces, shows a remarkable property: for small �, the height and width of the drop are near

identical to expressions for the thickness and parallel correlation length for microscopic wetting films. The

only difference is that the bulk correlation length is replaced by the cylinder radius. This geometrical

amplification of the microscopic lengths occurs for second-order, first-order, and complete wetting

transitions, and is specific to three dimensions. Similar phenomena occurs for long-ranged forces, and

shows crossover scaling behavior.
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Fluid adsorption and the micro-fluidics of droplet
spreading on structured substrates has received enormous
attention recently [1–4]. One particularly interesting
surface topography is a flat wall patterned with vertical
rods, which leads to superhydrophobicity, in which a liquid
drop is suspended by the tips of rods [5–8]. In this Letter,
we point out that fluid adsorption in this geometry also
shows scaling behavior, and a remarkable connection be-
tween macroscopic capillarity and microscopic theories of
wetting transitions. To see this, consider a structured sub-
strate in which a cylinder of radius R protrudes normally
from a planar wall. We assume that cylinder and wall are
made of the same material, and are in contact with a
bulk vapor at temperature T (below its bulk critical point)
and pressure p close to saturation psat. Gravity is ne-
glected. At the wall, but far from the cylinder base, one
finds a microscopic adsorbed layer characterized by a
thickness ‘�, a parallel correlation length �k, and an inter-

facial roughness �? [3,9,10]. A slightly thinner wetting
layer coats the cylinder far above the wall [11]. In addition
to this, a macroscopic liquid drop condenses at the foot of
the cylinder, the size of which depends on R, � and the
undersaturation �p ¼ psat � p. Let us determine the
drop size using macroscopic arguments. Let ‘ðrÞ denote
the drop height at radial distance r from the cylinder
center. The height at contact is ‘0 � ‘ðRÞ, while Rk is

the lateral width, where ‘ðRkÞ ¼ 0 (see Fig. 1). To begin,

we assume we are at two-phase coexistence, p ¼ p�
sat. The

macroscopic excess free-energy is the sum of the
surface tension and line tension contributions which, on
using Young’s equation and ignoring constant terms, re-
duces to

F½‘� ¼ �A� �ð2R‘0 þ R2
kÞ� cos�þ 2��Rk: (1)

Here, A ¼ 2�
RRk
R drr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ‘0ðrÞ2p

is the area of the
liquid-vapor interface, � is its interfacial tension, and �
is the line tension. Minimization of F½‘� leads to a simple
Euler-Lagrange equation, which can be integrated to get
the drop shape. For the width and height, we find

Rk ¼ � � cos�

�sin2�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2sin4�
þ R2cot2�

s
(2)

and

‘0 ¼ R cos� ln

0
@Rk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
k � R2cos2�

q
Rð1þ sin�Þ

1
A; (3)

respectively. These macroscopic results are only valid for
0< �< �=4, where the bounds correspond to different
phase transitions. As � is increased to �=4, the droplet
vanishes indicating that the adsorption is microscopic
for larger contact angles. The vanishing of the macroscopic
droplet is to be expected since � ¼ �=4 is the filling

FIG. 1. Schematic illustration of a macroscopic drop of liquid
at the base of the cylinder. Symbols are described in the text.
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phase boundary of a right-angle linear wedge [12,13]—a
geometry obtained in the limit of infinite cylinder radius.
For � > �=4, one must improve on (1) and adopt a more
microscopic approach, similar to studies of wedge filling,
which allow for intermolecular forces and interfacial fluc-
tuations [14]. Near the filling phase boundary, we antici-
pate crossover scaling behavior between these microscopic
and macroscopic regimes. For example, for systems with
short-ranged forces, we expect that, exactly at � ¼ �=4,

the droplet size scales as ‘0 � Rk � R � ðkBTR=�Þ1=3,
where the power-law is determined by the wandering ex-
ponent for continuous filling transitions [14]. This scaling
arises because the dominant correlation length (which
would diverge in an infinitely long wedge) is limited by
the cylinder circumference. Ising model simulations could
test this using a ’’cylinder‘‘ of square cross section, similar
to studies of interfacial behavior in double wedges and
bipyramids [15,16].

The limit which is far more surprising corresponds to the
approach to a wetting transition. Suppose that � < �=4 and
the temperature is increased toward the wetting tempera-
ture Tw, at which � ¼ 0. The behavior of the drop in this
limit is intimately connected, far more than one may
initially suspect, with the critical singularities of the under-
lying microscopic transition. Let us begin by focussing on
systems with short-ranged intermolecular forces:

Second-order (critical) wetting.—In this case, ‘� and �k
diverge continuously as T ! Tw, while the line tension is
negative and vanishes. At mean-field level, microscopi-
cally based calculations show that � / ðTw � TÞ and the
length scales diverge as

�k � �b

�
; ‘� � ��b ln�; (4)

where �b is the bulk correlation of the liquid wetting film
[10,17]. Similarly, for the line tension, one finds � �
����b [18]. For this transition, the upper critical dimen-
sion is du ¼ 3, and while there are long-standing renor-
malization group predictions for the strongly nonuniversal
critical behavior (for example, concerning the vanishing of
�), the dependences of ‘�, �k and � on � are hardly altered

[19,20]. Substituting for � into (2) shows that the line
tension does not influence the growth of the droplet as
T ! Tw, whose size diverges continuously as

Rk � R

�
; ‘0 � �R ln�: (5)

These are strikingly similar to the microscopic predictions
for the wetting transition itself, but with the cylinder radius
replacing the bulk correlation length.

First-order wetting transitions.—At a first-order wetting
transition, the length scales ‘� and �k remain finite as

T ! Tw. The line tension is negative far from the transi-
tion, but becomes positive on approaching Tw and, for
systems with short-ranged forces, remains finite at Tw

[18]. From (2), it follows that, provided the condition

R � j�j
��

(6)

is met, the droplet grows initially according to the Eq. (5)
and the line tension is unimportant. Obviously, for fixed
� > 0, one may always imagine that R is large enough so
that this criterion (6) is fulfilled. For fixed R and � ! 0,
however, the criterion fails, which indicates crossover to
another behavior. In this limit, the line tension controls the
behavior of the drop, which saturates to a finite size at Tw—
consistent with the first-order nature of the transition. The
width of the drop at T ¼ Tw is given by

Rk ¼ �R2

2�
þ � � � ; (7)

where the ellipses denote negligible terms, independent of
the cylinder radius R. The significance of this result is,
once again, the similarity it bares to the parallel correlation
length at first-order wetting. This can be calculated from an
effective interfacial Hamiltonian approach using a binding
potential Wð‘Þ which determines the length scales from

W 0ð‘�Þ ¼ 0 and �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=W 00ð‘�Þ

p
[10]. The expression

for the line tension is a given by [18]

� ¼ ffiffiffiffiffiffiffi
2�

p Z 1

‘�

d‘

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2
�2 þWð‘Þ

r
�

ffiffiffiffi
�

2

r
�

�
: (8)

For first-order wetting, Wð‘Þ has a potential barrier be-
tween the bound and wet phases. For systems with short-
ranged forces, and exactly at Tw, this factorizes as

Wð‘Þ ¼ ce��‘ðe��‘ � e��‘�Þ2 þ � � � ; (9)

where ‘� is the finite thickness of the wetting layer at the
transition. The ellipses denote higher-order exponentially
decaying terms. These are unimportant if the transition is
weakly first-order, corresponding to large ‘� and �k, for
which the effective Hamiltonian approach is valid. Using
this potential, we find the relation

�k ¼ 4��2
b

3�
: (10)

Once again, comparison with the result (7) reveals that, for
large cylinders, the geometry amplifies the underlying
microscopic wetting length, replacing �b with (a simple
multiple of) the cylinder radius.
The unexpected connection between short-ranged mi-

croscopic wetting and macroscopic capillarity extends to
the complete wetting occurring for T > Tw (for which
� ¼ 0). Close to coexistence, a thick wetting layer of liquid
intrudes between the planar wall and the bulk vapour, and
is similarly characterized by a thickness ‘� and parallel
correlation length �k [10]. Again, for systems with short-

ranged forces, the upper critical dimension is dcou ¼ 3, and
the mean-field predictions
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�k �
ffiffiffiffiffiffiffiffiffi
�b�

�p

s
; ‘� � ��b ln�p (11)

are accurate [20]. For example, only the amplitude of the
logarithmic divergence is slightly altered. Now, compare
these results with the macroscopic theory for the droplet
near the cylinder, but with conditions of complete wetting.
We suppose that the bulk vapor is at pressure p < psat, and
wish to determine how the height ‘0 and lateral radius Rk
grow as the undersaturation �p is reduced. Recalling that
the contact angle is zero, and that a line tension is no longer
defined, the macroscopic free-energy reads

F½‘� ¼ �Aþ �pV � ��ð2R‘0 þ R2
kÞ; (12)

where V is the drop volume. Upon minimization, we find
that, for small undersaturations �p < 1=R, the dimensions
of the drop are given by

Rk �
ffiffiffiffiffiffiffiffiffiffiffiffi
2�R

�p
;

s
‘0 � �R

2
ln�p (13)

and, similarly, correspond to a geometrical amplification of
the underlying complete wetting length scales.

The unexpected connection between the size of the drop,
induced by the protruding cylinder geometry, and the
length scales for the underlying microscopic wetting layer
is the main result of our paper, and is summarized in
Table I. This connection is somewhat similar to that be-
tween adsorptions at apexes, wedge filling and wetting
transitions [21–23]. However, in that case, the comparison
is between microscopic descriptions of phase transitions in
different geometries. The origin of the present connection
is more obscure to us, given the quite different natures of
the macroscpic and microscopic calculations. The micro-
scopic description of the length scales ‘� and �k requires a
specific binding potential function Wð‘Þ (or equivalently a
disjoining pressure) for each of the transitions. Yet, within
the macroscopic approach, there is no mention of a binding
potential. Some further remarks are made below:

(I) While the cylinder amplifies the length scales ‘� and
Rk, it does not affect the interfacial roughness. For planar
wetting films, the roughness �? describes the r.m.s. fluc-
tuations in the interfacial height about ‘�. Within effective
Hamiltonian theory, this is determined by

�2
? ¼ kBT

2��

Z �

0
dq

q

��2
k þ q2

(14)

corresponding to the inverse of the Fourier transformed
height-height correlation function [24]. Here, � is a mo-
mentum cutoff of the order of 1=�b. For example, for
critical wetting with short-ranged forces, this leads to

�2
? � kBT

2��
ln��1; (15)

where we have again expressed the result in terms of the
contact angle. Now, reconsider the macroscopic descrip-
tion for the droplet (for critical wetting) and determine the
analogous r.m.s. roughness w for the height at contact with
the cylinder. One can do this by partially minimizing the
free-energy (1) keeping the height at the cylinder fixed at
an arbitrary value ‘. For small �, this constrained free-
energy has the form

fð‘Þ
��

¼ �2R‘þ �‘Xð‘Þ þ �2

2
Xð‘Þ2; (16)

where X is defined implicitly from ‘ ¼ �X lnðX=RÞ. The
minimum of this potential recovers the asympotic result
‘0 ¼ �R ln�, while the curvature determines the rough-
ness of the drop from

w2 ¼ kBT

f00ð‘0Þ : (17)

From the potential (16), it follows that the droplet rough-
ness w is the same as the microscopic roughness �?, given
by (15). The equivalence of the roughnesses is all the more
surprising given that, in the calculation for the drop, there
is no momentum cutoff.
(II) We have shown that the connection between the

droplet size and microscopic wetting is specific to three-
dimensions. We illustrate this for critical wetting. For
d > 3, the cylinder does not induce the condensation of a
macroscopic drop, since its width Rk � �b=� is the same

size as �k. For d < 3, on the other hand, the width scales as

Rk � R�1=ð2�dÞ which is much larger than the parallel

correlation length � � �b�
2=ð1�dÞ. It follows that the cyl-

inder has a marginal perturbative influence on the micro-
scopic wetting layer in three dimensions, affecting the
amplitude but not the power-law dependence on �. It is
perhaps coincidental that this is also the marginal (upper
critical) dimension for the wetting transition itself.
(III) Similar phenomena occurs in the presence of long-

ranged (dispersion type) intermolecular forces. This is
discussed in detail elsewhere [25] but is illustrated here
for the case of critical wetting. Provided the condition (6) is
met, the dimensions of the drop are the same as for systems
with short-ranged forces, given by (4). In this regime,
the line tension and the range of the intermolecular
forces do not matter. However, as the wetting transi-
tion is approached, the singularity of the line tension,

TABLE I. Comparison of derived expressions for the droplet
width Rk and parallel correlation length �k for the cases of

critical wetting, complete wetting, and first-order wetting in
systems with short-ranged forces.

Critical Complete First-Order

�k
�b

�

ffiffiffiffiffiffiffi
�b�
�p

q
4��2

b

3�

Rk R
�

ffiffiffiffiffiffiffi
2R�
�p

q
�R2

2�
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� � ��ðp�1Þ=ðpþ1Þ, is all important and determines the
droplet size (here p ¼ 2 and p ¼ 3 correspond to non-
retarded and retarded dispersion forces, respectively). In
this asymptotic regime, the width is independent of the
cylinder radius, and scales instead with the parallel corre-

lation, Rk � �k � ðTw � TÞ�ðpþ3Þ=2. The crossover be-

tween these regimes shows scaling behavior described by

Rk ¼ �k�ðR=‘�Þ; (18)

where �ðxÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
is a scaling function (ignoring

trivial metric factors). Note that the argument of the scaling
function is a ratio of relevant length scales, and is similar to
other finite-size scaling for wetting transition in confined
geometries [26]. The condition R=‘� � 1 is precisely
equivalent to the criterion (6).

Finally, we believe that our predictions can be tested
using more microscopic density-functional theories, in
simulations, and in the laboratory. Experiments using mo-
lecular fluids should be possible for complete wetting,
similar to recent studies of adsorption in wedges and
grooves [27,28]. It would also be very interesting to study
this in colloid-polymer mixture which are effectively short-
ranged [29]. Even for critical wetting, where there is a
paucity of solid-fluid interfaces that exhibit the transition,
one could use a binary-liquid mixture [30], and equiva-
lently introduce a vertical needle into the wetting layer. For
first-order wetting one may also envisage using the pre-
diction (7) to measure the line tension close to the wetting
transition [31]. We stress that, in all these experimental
scenarios, gravity can be safely neglected below the scale
of the capillary length.
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