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The elastic properties of pure iron and substitutionally disordered 10 at. % Cr Fe-Cr alloy are

investigated as a function of temperature by using first-principles electronic-structure calculations by

the exact muffin-tin orbitals method. The temperature effects on the elastic properties are included via the

electronic, magnetic, and lattice expansion contributions. We show that the degree of magnetic order in

both pure iron and Fe90Cr10 alloy mainly determines the dramatic change of the elastic anisotropy of these

materials at elevated temperatures. The effect of lattice expansion is found to be secondary but also very

important for quantitative modeling.
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The development of construction materials for new gen-
erations of power plants (both thermal and nuclear) is one
of the most urgent tasks in materials science. Attention has
recently been drawn to stainless steels [1,2]. Steels have
been studied experimentally and theoretically for many
decades, but tools for atomistic modeling of these inher-
ently complex materials are at the development stage. The
main complication here is magnetism of iron and of some
other steel ingredients. The change of magnetic order in
iron and steel with temperature is known to strongly affect
their thermodynamic and kinetic properties. However,
these effects are extremely difficult to model starting
from first principles. Development of ab initio modeling
techniques that can describe the properties of iron and steel
at temperatures relevant for applications of these materials,
not just at 0 K, is therefore a challenging scientific task of
high practical importance.

In this Letter, we present a modeling approach, based on
electronic-structure calculations, to describe temperature
dependence of the elastic properties of iron and its alloys.
Elastic properties are vital for many practical applications
but are also important parameters of phenomenological
models such as the phase-field method or continual dis-
location theory [3]. It has been experimentally found that
the elastic anisotropy of �-Fe increases by almost an order
of magnitude upon the temperature change from room
temperature to above the Curie point [4–6].

The temperature dependence of elastic constants in�-Fe
is a vivid manifestation of the magnetic effect on the
physical properties of iron and its alloys. Strictly speaking,
the crystal structure of �-Fe is body-centered tetragonal
[7,8] below the Curie temperature (TC ¼ 1043 K),
although the tetragonality is small (10�5) so that ferromag-
netic iron may be considered cubic for most practical pur-
poses. Also, its elastic anisotropy A ¼ C44=C

0 [where
C0 ¼ ðC11 � C12Þ=2 is the tetragonal shear constant and
Cij are the three cubic elastic constants] is rather weak;

see Fig. 1. It is curious that, as �-Fe becomes truly cubic

in the paramagnetic phase above TC, it simultaneously
becomes strongly elastically anisotropic. The high anisot-
ropy values are mainly due to softening of C0 in the para-
magnetic state of �-Fe. This softening of the crystal lattice
with respect to tetragonal shear has important metallurgical
implications, e.g., for the activation energy of carbon
diffusion in steel [5].
The temperature dependence of the elastic constants of

bcc Fe was theoretically investigated before within the
single-site spin-fluctuation theory of band magnetism by
Hasegawa, Finnis, and Pettifor [9]. They qualitatively re-
produced the observed anomalous softening of C0 close to
the Curie temperature and related it to the eg electronic

states. However, their microscopic approach is based on a
simplified treatment of electronic structure in the tight-
binding approximation employing fitting parameters and
therefore does not possess the predictive power needed for
computational materials design.
Here we propose a first-principles-based modeling ap-

proach to this phenomenon and demonstrate its numerical
accuracy for the case of pure iron, for which detailed
experimental data exist. Using an example of a random
Fe90Cr10 alloy, we show how this approach can naturally be
extended to alloys.
The present modeling is based on density-functional-

theory (DFT) calculations of the total energy and employs
the generalized gradient approximation to the exchange-
correlation potential [10]. The main body of calculations is
performed by using the exact muffin-tin orbital (EMTO)
method combined with the full-charge-density technique
[11]. The method has been implemented within the Green’s
function formalism [12] and can treat chemically and/or
magnetically disordered alloys in the coherent potential
approximation [13]. For the case of the ferromagnetically
ordered iron, we benchmark our EMTO calculations
against the projector-augmented-wave (PAW) [14,15] cal-
culations performed by using the Vienna ab initio simula-
tion package (VASP) [16]. The EMTO-coherent potential
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approximation calculations have been performed by using
an orbital momentum cutoff of lmax ¼ 3 for partial waves.
The VASP-PAW calculations have been performed by using
a plane-wave cutoff energy of 350 eV. The elastic proper-
ties have been calculated according to the scheme pro-
posed by Mehl, Klein, and Papaconstantopoulos [17], by
using one isotropic (volume) strain and two volume-
conserving (orthorhombic and monoclinic) strains to de-
termine, respectively, the bulk modulus B and two shear
elastic constants C0 and C44. Convergence of the elastic
property calculations with respect to k points and other
computational details has been carefully checked; see
Ref. [18] for details.

To extend the modeling to finite temperatures, one has to
include the thermodynamic contributions due to phonon,

electronic, and magnetic degrees of freedom. At present,
this task is too heavy for a fully ab initio treatment [19],
especially taking into consideration the mutual interde-
pendence of these contributions. A practical approach to
disentangle this complicated modeling situation is to use
data easily obtainable either from the literature or by direct
experiments. The present model uses experimental data on
the lattice parameter and the long-range magnetic order
parameter (magnetization).
The model treats the temperature dependence of elastic

constants as a combination of three contributions from,
respectively, lattice (thermal) expansion, electronic excita-
tions, and magnetic disorder. This approach is quite gen-
eral and may be applied to a wide range of solids. For
instance, in a nonmagnetic insulator, only the first contri-
bution is substantial, and it mainly originates from pho-
nons. To include the effect of lattice expansion, the present
calculations are done at the experimental temperature-
dependent lattice parameters [20]. The contribution
from electronic excitations is included in the usual form
of Fermi-function smearing (electronic temperature)
[21,22]. In the case of iron, these two contributions exhibit
a normal behavior, whereas the magnetic contribution is
anomalously strong.
Thermal magnetic disorder is modeled via the partially

disordered local moment (PDLM) approximation, de-
scribed in detail in Ref. [23]. A partially disordered ferro-
magnetic state with the long-range magnetic order
parameter (magnetization)m is approximated by a random
alloy Fe1�y

"Fey# such that m ¼ 1� 2y. In the completely

ordered ferromagnetic (FM) state, one has m ¼ 1. The
disordered paramagnetic state with m ¼ 0 reduces to the
well-known disordered local moment (DLM) state, which
for pure Fe is represented by a random Fe0:5

"Fe0:5
# alloy of

Fe atoms with spin up ( " ) and spin down ( # ) orientations
[24]. In the present calculations, the magnetic order pa-
rameter is varied from 1 to 0 as a function of temperature
according to the experimental magnetization curve mea-
sured by Crangle and Goodman [25] and represented in
analytical form by Kuzmin [26]. One obvious shortcoming
of the PDLM approximation is its mean-field nature; i.e., it
neglects magnetic short-range order above TC.
In Fig. 1, the results of present calculations are com-

pared with previous theoretical and experimental data. In
order to single out the effect of lattice expansion, we
perform a series of calculations in the fully ordered FM
state (m ¼ 1). The calculated FM moduli decrease with
temperature, mainly due to lattice expansion, thus exhib-
iting a normal softening behavior [27,28]. The present
VASP-PAW results have been obtained at the extrapolated

to 0 K experimental lattice parameter a0Kexp ¼ 2:860 �A [20].

We note that the EMTO and VASP-PAW elastic constants
calculated at the extrapolated to 0 K lattice parameter are
closer to the experimental data than the EMTO results of
Ref. [29] calculated at the theoretical lattice parameter. At
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FIG. 1 (color online). Experimental and calculated elastic
properties of iron as a function of temperature: bulk modulus
B, shear elastic constants C44 and C

0 (all in GPa), and anisotropy
constant A (dimensionless). The results are compared with the
available experimental data from Refs. [4,5], as well as with
theoretical results (for FM state) of Ref. [29] and of our present
VASP-PAW calculations. Lattice parameter dependence on tem-

perature is taken from Ref. [20]. The legend applies to all panels.
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the same time, our calculations at the theoretical lattice

parameter a0Kcalc ¼ 2:837 �A yield values B ¼ 194 GPa,
C44 ¼ 102 GPa, and C0 ¼ 78 GPa that are very close to
those obtained in Ref. [29].

When comparing with experimental data from ultra-
sonic measurements, such as those of Refs. [4–6], one
should keep in mind that ultrasonic techniques yield adia-
batic elastic moduli. The difference between isothermal
and adiabatic elastic moduli cancels out for shear moduli
(which are of our primary interest here) but is an increasing
function of temperature for bulk and Young’s moduli
[28,30]. However, typical frequencies of electronic and
magnetic relaxation processes in metals are much higher
than the frequencies used in ultrasonic measurements, so
that at any instant of time (on the phonon time scale) the
system may be considered as relaxed with respect to the
fast (electronic and magnetic) degrees of freedom. In order
to mimic the experimental situation in the calculations, the
elastic moduli should be defined as second-order deriva-
tives (with respect to the strain) of a partial free energy that
contains entropy contributions due to magnetic and elec-
tronic degrees of freedom but not due to phonons.

The changes of elastic moduli due to electronic tem-
perature are calculated to be small in the paramagnetic
DLM state (at T ¼ TC), typically less than 2 GPa. In the
ordered FM state considered at TC, the corresponding
changes are more pronounced, about 16 GPa, but such a
state is unstable at high temperatures. The results for the
high-temperature DLM state (m ¼ 0) are indicated in
Fig. 1 by open circles with dot-dashed lines. The change
with temperature exhibited by the FM and DLM curves
plotted in Fig. 1 shows a combined effect of thermal
expansion and electronic excitations on the elastic proper-
ties of iron in the two magnetic states. The distance be-
tween the curves gives the effect due to the change of
magnetic order parameter from 1 to 0. This effect is mostly
due to energy; the effect of magnetic entropy, evaluated
as Smagn ¼ kB lnðMS þ 1Þ, where kB is the Boltzmann

constant and MS is the magnitude of local magnetic mo-
ment (in Bohr magnetons), on the bulk modulus is found
to be about 4 GPa at the Curie temperature. Note that, if
the magnetic order parameter value is fixed to either 1
or 0, the C0 and A are almost insensitive to temperature
up to TC.

FIG. 2 (color online). Experimental [4–6] and calculated characteristic surfaces showing the Young’s modulus as a function of
crystallographic direction in �-Fe. The values on the color scale and on the axes are in GPa.
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Thus, our calculations confirm that it is the change of
magnetic order with temperature which produces a deci-
sive effect on the elastic anisotropy of iron. The PDLM
results (filled circles, full lines in Fig. 1) represent the
prediction of our model for the elastic properties of Fe in
the temperature interval 0< T < TC. The model performs
very well in the DLM state at T ¼ TC, where it very
closely reproduces the elastic moduli and the strong elastic
anisotropy of iron. At low temperatures the accuracy is
worse, mainly because the C44 of ferromagnetic iron is
underestimated in DFT calculations (the absolute error
is about 30 GPa for VASP-PAW and 40 GPa for EMTO).
This is a known problem of semilocal DFT functionals that
may be resolved in the future by using more accurate
approximations for the exchange-correlation energy.
Most importantly for practical applications, the present
model is able to describe the temperature dependencies
of B and C0 and the elastic anisotropy of pure iron. The
change of the elastic anisotropy of pure iron with magne-
tization (temperature) is further illustrated in Fig. 2, where
we plot the experimental and calculated characteristic
surfaces of the Young’s modulus of Fe in the FM
(m ¼ 1), PDLM (m ¼ 0:5), and DLM (m ¼ 0) states.

Finally, we apply our model to the random Fe90Cr10
alloy having a typical composition of steels considered
for nuclear energy applications [1,2]. The experimental
lattice parameters for the alloy are taken from Ref. [31].
The magnetization dependence on temperature for the
alloy is taken in the same analytical form as for Fe [26],
and the Curie temperature is taken from Ref. [32].

In Fig. 3, the calculated elastic anisotropy of Fe90Cr10
alloy is compared to that of pure iron. The lines are linear

interpolations (using temperature or magnetization as the
variable) between FM and DLM states. One can see that the
elastic anisotropy constant in both Fe andFe90Cr10 alloy has
a very pronounced curvature reproduced by our PDLM
calculations and observed in the experiments for pure iron
(see Fig. 1). Figure 3 shows that at high temperatures,
relevant for the manufacturing and some applications of
steel, the alloy is less elastically anisotropic than pure iron,
although the calculated anisotropy value is still quite high.
In summary, we have developed a microscopic finite-

temperature modeling approach to calculate the elastic
properties of iron and its alloys. The effect of temperature
on the elastic properties of pure iron and Fe90Cr10 alloy has
been investigated, and different contributions to the tem-
perature dependence of elastic moduli have been analyzed.
The degree of magnetic order is found to have a dramatic
effect on the elastic anisotropy.
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