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A precise knowledge of the temperature and number of hot electrons generated in the interaction of short-

pulse high-intensity lasers with solids is crucial for harnessing the energy of a laser pulse in applications

such as laser-driven ion acceleration or fast ignition. Nevertheless, present scaling laws tend to overestimate

the hot electron temperature when compared to experiment and simulations. We present a novel approach

that is based on a weighted average of the kinetic energy of an ensemble of electrons. We find that the

scaling of electron energy with laser intensity can be derived from a general Lorentz invariant electron

distribution ansatz that does not rely on a specific model of energy absorption. The scaling derived is in

perfect agreement with simulation results and clearly follows the trend seen in recent experiments,

especially at high laser intensities where other scalings fail to describe the simulations accurately.
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One of the most important and yet controversial physics
issues in short-pulse laser-solid interaction is the determi-
nation of the temperature and number of hot electrons
accelerated by the intense fields of the laser pulse [1–4].
Many applications—including fast ignition schemes, fem-
tosecond diffractometry, ion acceleration, and x-ray pro-
duction—depend crucially on achieving the highest
possible conversion efficiency and electron temperature
with the minimum amount of laser energy possible [4].
Thus, deducing the scaling of hot electron temperature
from laser intensity is of great importance, yet, up until
now there exists no consistent analytical model that can
accurately predict the scalings seen in experiments and
simulations for both nonrelativistic and relativistic inten-
sities. This is partly due to the fact that depending on
preplasma scale length, intensity and polarization of the
laser pulse, the absorption of laser energy by electrons can
be described by various processes like resonance absorption
[5], skin layer heating [6], Brunel heating [7], and v� B
heating [8]. The scaling introduced in this letter overcomes
the need for a specific absorption model by introducing a
Lorentzian scalar steady state distribution function for the
electron energy. This distribution function is then used to
derive a general expression for the electron mean energy.
Finally, we identify this mean energy with the hot electron
temperature and derive its scaling with laser intensity from
the simple electron quiver motion in the electromagnetic
wave. (We adopt the term ‘‘temperature’’ as a synonym for
the average kinetic energy in order to compare our results
with previous publications and experiments. This term is
commonly used in laser-matter interaction theory due to the
existence of a quasiexponential slope found in the energy
spectrum of hot electrons both in experiments and simula-
tions [9]. It does not strictly resemble a temperature in the
thermodynamics sense, since during the laser plasma inter-
action the situation is nonequilibrium, and it would imply a
vanishing mean electron flow velocity.) In a plane traveling

electromagnetic wave with angular frequency!0 and wave
vector k0 ¼ k0ez the fields are given by a ¼ E=E0 ¼
eE=ðmec!0Þ ¼ a0 cosð!0t� k0zÞex and b ¼ B=B0 ¼
eB=ðme!0Þ ¼ �a0 cosð!0t� k0zÞey and the transverse

canonical momentum is conserved [10]. Using Lorentz’s
equation one then finds for single electrons initially at rest

that the momenta pxðtÞ, pzðtÞ and energy �ðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
are given by [4]

pxðtÞ ¼ a0 sin½!0t� k0zðtÞ�; (1)

�ðtÞ � pzðtÞ ¼ 1; (2)

and, hence pzðtÞ ¼ pxðtÞ2=2, assuming an adiabatic laser
ramp-up. Note that here and throughout the Letter a unit
system where the speed of light, electron mass, electron
charge are unity, c ¼ me ¼ e ¼ 1. As a measure for the
laser intensity I we introduce the laser strength parameter

a0 ¼ ½2I=ðncmec
3Þ�1=2 where nc ¼ me"0!

2
0e

�2 is the criti-

cal density of the cold plasma.
When a relativistic plane wave interacts with an en-

semble of electrons initially at rest, the electrons will be
randomly injected into the wave’s phase. The average
kinetic energy at any time, averaged over all hot electrons,

is given by h�i ¼
R

�f�d�R
f�d�

, where f� ¼ dN=d� is the en-

ergy distribution function of the electrons. With the laser
wave propagating at velocity cez, að’Þ is a periodic func-
tion with period 2� in ’ ¼ !0t� k0z. If we neglect
effects such as repeated heating [11,12], the electron en-
ergy must be a periodic function with the same period as
að’Þ and the average can then be written as

h�i ¼
Rtð’¼2�Þ
0 �ðtÞftdtRtð’¼2�Þ

0 ftdt
: (3)

Since the electron distribution ft ¼ dN=dt is difficult to
derive ab initio, we derive f’ ¼ dN=d’ and then use
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ft ¼ dN=d’ d’=dt. This approach has the advantage that
f’ transforms as a scalar under Lorentz transformation,

and thus remains constant throughout the interaction with
the laser. For this to be valid, one only has to assume (2) to
be fulfilled without any further assumption on the laser
field, especially one may drop the plane wave assumption.
In that case, the phase shift of an electron is proportional
to its proper time, d’ ¼ ð1� �zÞdt ¼ ��1dt ¼ d�.
Assuming a uniform electron distribution at t0 ¼ �0 ¼ 0
before the laser pulse has been switched on, the distribution
dN=d’ will remain uniform for a given electron proper
time �1 > 0, dN=d’j�¼�1 ¼ const [see Fig. 2(a)]. The

requirement � ¼ �1 for all electrons is equivalent to the
adiabatic ramp-up condition used before, because then the
electron motion in the laser wave does not depend on its
initial phase ’ið�0Þ.

In order to exemplify this we consider the case of a plane
wave and free electrons in vacuum. Using the conservation
of the 4-momentum of the combined system of particles
and fields [10] we again determine f’ ¼ dN=d’.

Considering the conservation of energy transferred from
the laser to electrons during one cycle in a steady state and
assuming a phase independent absorption fraction �, the
field energy absorbed in a given volume equals the sum
over the kinetic energy acquired by all particles therein.
Hence at a fixed time in the laboratory frame we find
with dz ¼ �d’

�
Z 2�

0
a20cos

2ðt� zÞdz ¼
Z 2�

0

XN
i¼1

½ð�i � 1Þ�ðz� ziÞ�dz

¼
Z 2�

0

XdN
i¼1

½ð�i � 1Þ�ð’� ’iÞ�d’

¼
Z 2�

0
ð ��ð’Þ � 1Þf’d’;

where ��ð’Þ ¼ R
’þd’
’

P
dN
i¼1½�i�ð’� ’iÞ�d’=�N is the

average electron energy of the �N electrons with ’i 2
½’;’þ d’�. Assuming the laser intensity has been
ramped up adiabatically, from (1) and (2) we have �� 1 ¼
a20sin

2’=2 for a free electron in a plane wave. Setting the

average electron kinetic energy ��ð’Þ � 1 equal to the
single electron adiabatic energy, it follows the trivial solu-
tion f’ ¼ const.

Instead of assuming a uniform electron distribution in
the laboratory time [as implicitly done in [13]; see Eq. (8)]
or postulating ad hoc nhot ¼ �nc (as done in [3]), we find
the electrons to be distributed uniformly with respect to the
retarded wave coordinate ’, which is equal to the electron
proper time. Hence, ft is given by

ft ¼ dN

d’

d’

dt
/ 1

�
: (4)

Now substituting (4) into (3) one finally obtains the result

h�i ¼ 2�R
2�
0

1
� dt

: (5)

This important relation states that the average kinetic
energy of the accelerated electrons is equal to the inverse
of the unweighted average of the inverse of the single
electron energy �ðtÞ with respect to laboratory time t. In
other words, the average electron kinetic energy is ob-
tained by averaging the single electron energy with respect
to the phase’ or to the electron proper time. Consequently,
the average energy of an electron ensemble cannot be
derived simply by averaging the single electron energy
over the laboratory time.
The key to inferring the hot electron temperature from a

given laser intensity now lies in deducing h�i from the
electron dynamics at the critical surface. For this we focus
on the important case of laser normal incidence. At oblique
laser incidence most additional heating mechanisms are
suppressed in the presence of a density gradient and/or
high laser intensities (see [7] within limits) and the electron
temperature approaches that of normal incidence.
In the following we will first consider the case

of a steplike density gradient and high electron density
ne � 1 and then discuss the more realistic case of a
preplasma with the existence of a region of ne � 1.
At a steep density interface the plasma can build up an

electric field that tends to balance the ponderomotive force
at any time [14], the electron motion is then governed in
first order by the quiver motion parallel to the plasma
interface only (almost transverse solution [15]),

�xðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

xðtÞ
q

(6)

Using Eq. (1), the unweighted average over laboratory

time thus reads h�xit ¼
R
2�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20sin

2ð!0tÞ
q

dt=2� and

hence the temperature would be given by

Thot;osc ¼ 2Eð�a20Þ
�

� 1; (7)

where Eð�a20Þ is the complete elliptical integral of the

second kind. For a0 � 1 this expression converges with
the ponderomotive scaling [16]

Thot;pond: ¼ �pond � 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

2

s
� 1; (8)

which to describe the electron temperature at a flat solid
has been first suggested by Wilks et al. [13]. For a0 � 1
Eq. (7) gives only small correction to (8), by a factor of less

than 23=2=�, and cannot explain the low temperatures
observed experimentally and numerically for large a0.
Experiments [17–20] at intensities ranging from a0 � 0:2
to 20 attempting to measure the electron temperature show
a large scatter in their results but seem to suggest the
average total electron kinetic energy to be considerably
below the ponderomotive energy (see Fig. 1). E.g., a recent

PRL 107, 205003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 NOVEMBER 2011

205003-2



experiment [18] found a temperature of about 2�
0:511 MeV for a0 � 8:5 which is significantly below the
ponderomotive temperature of 5:1mec

2. This fact had been
expressed already by Beg [19] in the empirical scaling

Thot;Beg ffi 0:469a2=30 . While for small a0 the average total

kinetic electron energy scaling seen in our 2D3V particle-
in-cell (PIC) simulations using the code IPICLS [21] coin-
cides with (8) we find it to be significantly below the
ponderomotive energy for a0 � 1 (Fig. 1), in agreement
with the experiments, yet higher than predicted by the Beg
scaling. In [3] an attempt was made to explain the weaker
electron temperature scaling, but it does not fit our simu-
lations for high intensities a0 � 1 nor does it converge
with the ponderomotive scaling for small intensities
a0 � 1 as one would expect from a fully consistent theory.

Following our model, the average energy of an electron
ensemble cannot be derived simply by averaging the single
electron energy over the laboratory time, so (7) does gen-
erally not give h�i. Only for nonrelativistic intensities and
hence small j�j � 1 the unweighted time averaged energy
h�it converges with the average energy given by (5).
Averaging Eq. (6) according to our result Eqn. (5),

we find the temperature scaling Thot
e ¼ 2�½R2�

0 ð1þ
a20sin

2!0tÞ�1=2dt��1 � 1 which is significantly less than

Eqs. (7) and (8) for a0 � 1. It can be expressed using the
complete elliptical integral of the first kind, Kð�a20Þ, by

Thot
e þ 1 ¼ �

2Kð�a20Þ
: (9)

Simple analytic expressions for Thot
e can be given for the

extreme cases a0 � 1 and a0 � 1,

Thot
e þ 1 ¼ 1þ a20

4
þOða4Þ ða0 � 1Þ;

Thot
e þ 1 ¼ �a0

2 ln16þ 2 lna0
þOða�3Þ ða0 � 1Þ;

We now analyze the more realistic case including a
certain amount of preplasma to be present in front of the
foil, e.g., due to laser prepulses or ASE, which will give
some correction to (9). The laser field can penetrate the foil
up to a skin depth � > �=2 as an evanescent wave and the
electron motion no longer is limited to the foil surface.
Electric and magnetic fields decrease exponentially with
increasing depth and the magnetic field changes its sign at
the interface. To estimate the resulting temporal field evo-
lution seen by a hot electron, we consider the fields ob-
served by a virtual test particle moving forward with c in
dependence of the phase of the wave when it crosses the
plasma boundary at z ¼ 0. Two limits are observed
[Figs. 2(c) and 2(d)]. One is given by a � 2a0 cosð!0tÞ,
b � 0, where t � 0 is the time when z ¼ 0. In this limit an
electron starting at z ¼ 0 will experience no longitudinal
forces due to the vanishing magnetic field, so there is no net
transfer of energy to the plasma. In the other limit it is
E=E0 ¼ �B=B0 ¼ aðtÞ ¼ cosð!0tÞ. In that limit an elec-
tron will experience a large longitudinal field and can thus
detach from the surface, keeping its energy and being
absorbed into the foil. The result are bunches emitted
into and traveling through the foil at a frequency of 2!0

and a separation of �=2 [Fig. 2(b)]. It can easily be shown
that (2) is still true, so the electron distribution is still given
by (4) and we can assume (5) to be still valid. With the

FIG. 1. Comparison of various temperature scalings with se-
lected experimental values (diamonds) and PIC simulations
(squares). Simulations include ionizations and collisions, target
is a flat foil with thickness 5� of copper ions, covered with a 2�
thick proton layer. The pulse duration of the Gaussian pulse with
waist 2� (a test simulation with a plane wave at a0 ¼ 100 yields
a similar temperature) was fixed at 100!�1

0 . To reduce computa-

tional demands, the electron density when fully ionized was set
to 10nc, 40nc or 100nc for intensities with a0 < 8:5, 8:5 	 a0 	
20 or a0 ¼ 100. This choice results in a skin-length � 
 �=2, a
situation corresponding to a realistic solid density case with
sufficient preplasma at the front surface.

FIG. 2 (color online). (a) Trajectories of electrons distributed
uniformly at t0 ¼ �0 ¼ 0, assuming adiabatic ramp up of laser
intensity (a0 ¼ 5). f� is constant while ft ¼ ��1, as indicated
by trajectories crossing the red boxes. (b) Electron phase space
density in the z� pz plane at the time the laser maximum
reaches the foil front surface. Electrons are emitted into the
target in bunches separated by �=2. Parameters are the same as
in Fig. 1 with a0 ¼ 5. (c),(d) Limiting cases for the temporal
evolution of fields at the position of a virtual particle moving
forward with c, crossing the critical density surface at t ¼ 0.
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above fields and with (1), (2), the Lorentz equation for the
transverse momentum component reads

dpx

dt
¼ aðtÞ þ vzbðtÞ ¼ a0

�
1� p2

x

2þ p2
x

�
cos!0t: (10)

This equation resembles a Riccati differential equation and
can be solved analytically. The result reads

pxðtÞ ¼ S� 2

S
;

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3a0 sin!0tÞ2 þ 8

q
þ 3a0 sin!0t

3

r
: (11)

It is now straightforward to obtain the single electron
temporal energy evolution �ðtÞ using (1) and (2).
Averaging the inverse �ðtÞ�1 over time and taking its
inverse according to (5), we finally obtain a prediction
for the electron temperature, shown in Fig. 1 by the dotted
line [in the following referred to as scaling (11)] and
contrasted with the ponderomotive scaling (8) (solid
line). Scaling (11) is in remarkable agreement with the
PIC results up to the highest simulated intensity with a0 ¼
100 where the ponderomotive scaling significantly over-
estimates the electron temperature. The deviation between
our model and PIC is less than 5% for all a0, while, for
example, the scaling presented in [3] for a0 ¼ 100 is off by
more than 30% and the ponderomotive scaling is off by
even almost an order of magnitude. Unlike the scaling from
[3], our model converges with the ponderomotive scaling
for a0 	 1 as expected. Compared to (9), scaling (11)
yields moderately lower temperature values since we as-
sumed the transverse canonical momentum to be con-
served, which is not true for the fields assumed in the
critical density region [Fig. 2(d)].

Finally, we illustrate the importance of the above by the
example of the maximum energy �max of ions accelerated
following the laser-electron interaction. The longer the
pulse duration, the more does the temperature influence

�max and the more important becomes the correct modeling
of the electron temperature scaling (Fig. 3). This can be
seen, for example, from a time limited fluid model used
for target normal sheath acceleration of protons

[11,22,23], �max � 2Thot
e ½lnðtp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2p þ 1

q
Þ�2. Here, tp �

!pitacc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 expð1Þp

where tacc � 1:3�, and !pi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zme=mi

p
!p is the ion plasma frequency of the protons

with mass mi ¼ 1836me and charge number Z ¼ 1. For

fixed, ultrashort laser pulse duration � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3672 expð1ÞThot

e

p
=ð1:3a0Þ the equation can be approxi-

mated by �max / Thot
e nhote and with nhote / a20=T

hot
e [24] it

becomes independent of Thot
e , �max / �2a20 �Oð�4a40=Thot

e Þ,
proportional to the laser intensity. The linear scaling of
maximum ion energy with intensity has been found before
by Zeil et al. [25] using an alternative ion acceleration
model developed in [24] and suggests that by optimizing
laser pulse energy and duration high-repetition short-pulse
laser systems can be favorable in terms of efficiency of
laser-driven ion acceleration if compared to long pulse
laser systems.
Our model is chosen to resemble the situation of high-

contrast high-intensity laser-matter interaction but ceases
to be valid in the case of very long pulse duration or in the
presence of intense prepulses or ASE pedestals, since the
assumption of predominant laser absorption at the critical
density surface interface may become invalid as the laser
energy can be reduced in the interaction with the pre-
plasma. Furthermore, we do not take into account the
electron temperature increase due to longitudinal and
transverse refluxing of electrons, though our findings can
be easily adopted in models describing the electron energy
enhancement [26].
In contrast to the standard ponderomotive scaling model,

the approach presented here focuses on the ensemble dy-
namics at the critical density interface, taking into account
the distribution of electrons with respect to the laser phase.
A simple analysis of the interaction dynamics at the critical
surface shows that the most energetic electrons detach
from the interface when the longitudinal v� B force is
maximum. With this assumption, validated by PIC simu-
lations, our model can be naturally connected to transport
models describing the energy and momentum transfer of
these hot electrons into the target bulk and thus lead to a
more complete understanding of the energy transfer in
laser-matter interactions.
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