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A kinetic photon transport model that accounts for spatial coherence is applied to line radiation in

optically thick plasmas. It is shown that the photon emission and absorption processes are delocalized in

space, which alters the global plasma opacity to spectral lines. Based on this analysis, we demonstrate that

spectral profiles and escape factors can be much larger than expected from usual formulas.
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In this Letter, a mechanism associated with light’s wave-
particle duality is explored, which leads to the alteration of
opacity effects in plasmas. Opacity is a fundamental issue
in plasma spectroscopy where line shapes are a very useful
diagnostic tool [1,2], in inertial and magnetic fusion plas-
mas [3–6] as well as in astrophysics [7] or in technical
applications such as lighting [8]. Opacity models for ra-
diative transfer are widely used in high-energy density
physics, e.g., to characterize the warm and hot dense matter
present in imploding inertial confinement capsules or in
stars [3,9,10]. Another important application of opacity
models is provided by radiation transport simulations in
magnetic fusion, in particular, with the advent of large-
scale devices such as the ITER facility (currently under
construction in France) and the development of integrated
modeling codes supporting its operation [11–14]. As a rule,
the reliability of the interpretation of spectra, as well as
predictions, relies on the development of accurate spec-
troscopy models accounting for opacity effects.

The new mechanism described here applies to line ra-
diation whose coherence length is comparable to the pho-
tons’ mean free paths. This issue cannot be addressed
within the conventional radiative transfer formalism
where, by definition, the light is described by pointlike
particles propagating along rays (‘‘geometrical optics
limit’’). More explicitly, the conventional radiation trans-
port theory uses as a fundamental quantity, the so-called
specific intensity—an energy flux per unit frequency and
solid angle—and assumes it to obey a Boltzmann-like
transport equation, similar to that used in the kinetic theory
of gases. This analogy suggests an interpretation in terms
of particles referred to as ‘‘photons’’ evolving in phase
space, interacting with matter through spontaneous or
stimulated emission, absorption and scattering. This inter-
pretation is not obvious because the photon as viewed from
QED does not have a definite position operator due to
symmetry considerations [15]. Various papers confirm
this point with different theoretical approaches [16–19].
The absence of such an operator leads to ambiguity if one
tries using the correspondence principle to associate the
equation of transfer with a quantum transport equation for

photons. A proper approach to the particle description of
radiation transport is provided by the Wigner quantum
phase space formalism adapted to second quantization
(e.g., [20]). Whereas several papers report on theoretical
developments [21–26], no explicit application to spectral
lines seems to have been carried out so far, and it is the
purpose of the present Letter to address this issue.
The fundamental quantities of interest in the quantum

transport model are the Wigner quasiprobability distribu-
tions Wsðr1;p1; . . . ; rs;ps; tÞ, which are generalizations of
the s-particle phase space distribution functions used in
classical kinetic theory. They account for nonclassical
features such as Heisenberg’s uncertainty principle and
quantum entanglement. ‘‘Quasiprobability’’ means that
these functions may become negative, which occurs for
physical states that have no classical equivalent. A coarse
graining procedure is done to avoid such a peculiarity, with
a spatial scale much larger than the photon’s thermal de
Broglie wavelength @=�p (where �p is the typical mo-
mentum dispersion). For a spectral line, the thermal wave-
length denotes the coherence length �c � c=�!1=2 where

�!1=2 is the half width at half maximum (e.g., [27]).

We consider the radiation as unpolarized and focus on
the one-photon Wigner function W1ðr1;p1; tÞ � Wðr;p; tÞ.
This quantity is defined as the average of the phase space
photon number operator Nðr;p; tÞ (we take @ ¼ 1):

Wðr;p; tÞ ¼ Tr½�ðtÞNðr;p; tÞ�; (1)

Nðr;p; tÞ ¼ 1

�3

X
"

Z
d3kay" ðp� kÞa"ðpþ kÞe2ik�r: (2)

Here, �ðtÞ is the density operator of the total (radiation-

matter) system, ay" ðkÞ and a"ðkÞ are, respectively, the
creation and annihilation operators corresponding to a
photon of wave vector k and polarization ", Tr denotes a
trace over the whole system’s Hilbert space. The
creation and annihilation operators obey the bosonic

commutation rules ½a"ðkÞ; ay"0 ðk0Þ� ¼ �""0�ðk� k0Þ and

½a"ðkÞ; a"0 ðk0Þ� ¼ 0 ¼ ½ay" ðkÞ; ay"0 ðk0Þ�. Examination of

Eqs. (1) and (2) shows that Wðr;p; tÞ is normalized to the
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total number of photons. In the above definitions all op-
erators are given in the interaction picture, i.e., of the form
AðtÞ ¼ expðiH0tÞAS expð�iH0tÞ for any observable AS in
the Schrödinger picture.H0 denotes the Hamiltonian of the
free (noninteracting) radiation-matter system.

A closed transport equation for the one-photon Wigner
function is obtained by applying the differential operator
@=@tþ cðp=pÞ � r � D=Dt on each side of Eq. (1) and by
using appropriate assumptions. The Lagrangian derivative
involves two terms of different physical origins. (i)DN=Dt
denotes the time variation of the phase space number
operator along a trajectory. It is identically zero in the
short wavelength limit, which corresponds to propagation
along defined straight rays. This limit is well satisfied for
spectral lines in the optical range, and we will focus on this
case in the following. However, it should be noted that a
closed expression in terms of the Wigner distribution can
still be obtained in the general case, albeit more compli-
cated. (ii) D�=Dt � d�=dt denotes evolution of the
Wigner distribution due to the interactions between the
radiation field and the plasma. These interactions corre-
spond to photon emission and absorption. These processes
are altered if the light’s coherence length is significant with
respect to the other space scales of interest. In order to
obtain a closed expression for Tr½ðd�=dtÞN� (which is
identical to DW=Dt), we assume that the radiation and
matter are weakly coupled, so that the evolution of the
density matrix can be described using a quantum master
equation. Following standard approaches [28–30], we
write

d�

dt
ðtÞ ¼ �

Z 1

0
d�½VðtÞ; ½Vðt� �Þ; �ðtÞ��; (3)

where VðtÞ describes the interaction between the charged
particles and the radiation. This term is linear in the
creation and annihilation operators. Within the dipolar
approximation, it is given for a gas of neutral atoms by

VðtÞ ¼ X
a

� daðtÞ �Eðra; tÞ; (4)

E ðr; tÞ ¼
Z d3k

ð2�Þ3=2
X
"

i

ffiffiffiffiffiffiffiffi
!

2"0

s
a"ðkÞeik�r"þ H:c:; (5)

where da and ra are, respectively, the dipole operator and
position operator of the center of mass of the ath atom
and H.c. stands for Hermitian conjugate. We assume
that the radiation always has a definite number of photons;
i.e., quantum averages such as ha"ðkÞa"0 ðk0Þi and

hay" ðkÞay"0 ðk0Þi are neglected. Algebraic manipulations

lead to the following transport equation [26]:

DW

Dt
ðr;p; tÞ ¼ Sðr;p; tÞ

�
Z

d3r0
Z

d3p0Kðr;p; t; r0;p0ÞWðr0;p0; tÞ:
(6)

Here, S denotes a source corresponding to photon creation
through spontaneous emission and the kernel K represents
absorption and stimulated emission. The explicit form of
these terms depends on the atomic system under consid-
eration. In the case of statistically independent atoms, they
are given by

Sðr;p; tÞ ¼ 1

�3p3
Re

Z
d3r0

Z
d3p0�cðr0;p0; tÞ

� exp½�2iðp� p0Þ � ðr� r0Þ�; (7)

Kðr;p; t; r0;p0Þ ¼ c

�6
Re

Z
d3r00

Z
d3p00�cðr00;p00; tÞ

� expf2i½ðp0 � p00Þ � ðr� r0Þ
� ðp� p0Þ � ðr� r00Þ�g; (8)

where �c and �c are complex generalizations of the emis-
sion and absorption coefficients used in the radiative trans-
fer theory. Considering the atomic transition u ! d,
one has

�cðr;p; tÞ ¼ !ud

4�
Nuðr; tÞAud�cð!; n̂; r; tÞ; (9)

�cðr;p; tÞ ¼ !ud

4�
½Ndðr; tÞBdu � Nuðr; tÞBud��cð!; n̂; r; tÞ:

(10)

Here !ud is the Bohr frequency of the transition; Aud, Bdu

and Bud are the Einstein coefficients for spontaneous emis-
sion, absorption and stimulated emission, respectively; Nu

and Nd are the densities of the species in the upper and
lower levels; and �c is the complex spectral line profile
normalized such that

R
d!

R
d��cð!; n̂; r; tÞ ¼ 4�, with

p ¼ !n̂=c, n̂ ¼ p=p, and defined by

�cð!; n̂; r; tÞ ¼
Z

d3vfðv; r; tÞ�0cð!ð1� n̂ � v=cÞ; n̂; r; tÞ;
(11)

�0cð!; n̂; r; tÞ ¼ 1

�

Z 1

0
d�Cð�; n̂; r; tÞe�i!�; (12)

where f is the atoms’ velocity distribution function that
accounts for thermal Doppler broadening and C is the
autocorrelation function of the atomic dipole projected
onto the polarization plane.
Equation (6), with the expressions of S and K given in

Eqs. (7) and (8), is a generalization of the standard radia-
tive transfer equation, which accounts for spatial coher-
ence. The integrals in space involve a volume of typical
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extent �3
c. It denotes an effective spatial range for delocal-

ization of the photon-atom interaction processes. This ex-
tent is a feature of the wave-particle duality of light—in
other words, it corresponds to the Heisenberg uncertainty
relation. Equation (6) reduces to the radiative transfer
equation in the limiting case �c ! 0.

The coherence length is comparable to the photon mean
free path at the line center, �mfp, for a sufficiently high

density of absorbers or sufficiently small line width. This
stems from an estimate using Eq. (10): taking �!�1

1=2 as a

typical value for the line shape function �c at the line
center and neglecting the stimulated emission term, one
obtains �c=�mfp / �fudNd�!

�2
1=2 where

�fud is the oscillator

strength of the transition. This ratio can be larger than unity
both in low- and high-density plasmas, even for broad lines
(�!1=2 � 10 eV) such as those emitted in x rays by multi-

charged ions (Fig. 1). This suggests that accurate radiation
transport simulations should rely on a quantum transport
model along the lines of the theory just presented above.
As an illustration of the coherence effects we show in
Fig. 2 a phase space map of the Wigner function corre-
sponding to hydrogen Lyman-	 in a one-dimensional slab
of size L ¼ 10 �mfp with perfectly absorbing walls, assum-

ing (a) �c=�mfp ¼ 0 and (b) �c=�mfp ¼ 10. The atomic

density (in both the upper and lower states) is assumed
homogeneous. On the y axis, �!=�!D stands for the
frequency detuning normalized to the Doppler width

�!D ¼ !udv0=c, with v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTat=mp

q
being the

thermal velocity for atomic temperature Tat. We assume
Tat ¼ 1 eV here. The coherence length is evaluated as
�c � c=�!D. In both cases, the map corresponds to px ¼
0 ¼ py and pz ¼ ð!ud þ �!Þ=c > 0; i.e., only photons

propagating toward the z > 0 direction are considered. The
coherence effects clearly modify the phase space distribu-
tion. A noticeable distortion of the Wigner function can be
observed close to the slab’s boundaries, with a decrease
and an increase (see Fig. 3) of the function on the left

(z ¼ �L=2) and right (z ¼ L=2) sides, respectively. This
distortion results from the large value of �c=�mfp and is

also a consequence of the gradients in the Wigner function
arising from the presence of the boundary within one
coherence length. The increase of the Wigner function
could be observable by passive spectroscopy. In a diagnos-
tic context, this means that a spectrum observed in an
optically thick medium could be misinterpreted if coher-
ence effects are not well accounted for.

FIG. 1. Plot of the relation �c=�mfp ¼ 1. The oscillator
strength �fud depends on the transition under consideration.
Coherence effects, expected when the ratio is larger than the
unit (upper side), can occur both in low- and high-density
plasmas.

FIG. 2 (color online). Phase space map of the one-photon
Wigner distribution in the (z, pz) plane for a slab, (a) without
spatial coherence and (b) assuming �c=�mfp ¼ 10. In both cases,

px ¼ 0 ¼ py and pz > 0. The spatial coherence results in a

distortion of the Wigner distribution.

FIG. 3. Spectral profile of Lyman-	 calculated at the slab’s
boundary z ¼ L=2, neglecting (dashed line) and retaining (solid
line) coherence effects. A strong increase of the Wigner function
is present when the coherence effects are retained.
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An additional consequence of the spatial coherence is
the modification of the coupled radiation—atomic popula-
tions kinetics. In optically thick media, the photon absorp-
tion process is a source of excited atoms, which contribute
to ionization. A common approach to retain absorption in
collisional-radiative models is provided by the so-called
escape factors [31]. For a given line u ! d, we define the
escape factor 
ud (sometimes referred to as ‘‘net radiative
bracket’’) in such a way that the net radiative deexcitation
rate NuðAud þ BudIudÞ � NdBduIud is identical to Aud
ud,
where Iud is the radiation specific intensity averaged with
the spectral line shape function. Figure 4 shows plots of the
escape factor at the slab’s center for various values of the
size L, again assuming �c=�mfp ¼ 0 and 10. The spatial

coherence leads to a strong increase of the escape factor, by
up to a factor 3 when L ¼ 10 �mfp. Accordingly, the

plasma is less opaque to the Ly-	 radiation on average,
which means that there are fewer excited atoms, hence less
ionization induced by photon absorption.

In summary, the present Letter shows the possibility for
an alteration of the radiation trapping mechanisms pro-
vided by the coherence properties of light. The photon
emission and absorption processes are delocalized in a
volume of size �3

c. This delocalization affects the photon
phase space distribution. By applying a quantum transport
model to a slab, we have shown that a spectral profile can
be strongly higher than expected from usual radiative
transfer models, indicating a reduction of the global plasma
opacity. The magnitude of this reduction is governed by the
ratio �c=�mfp. In collisional-radiative models, the coher-

ence effects can be accounted for through escape factors.
When applied either to low- or high-density conditions, the
ratio �c=�mfp can be as large as 10, which means that

coherence effects are realistic. Although the present analy-
sis is limited to a one-dimensional system, it puts forward
important physics to consider in plasma spectroscopy.
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