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Based on the conservation of linear momentum on scattering from arbitrary objects, we demonstrate the

generation of nonconservative optical forces that act in a direction opposite to the propagation of the

incident beam. The concept can be applied to tailor the force fields produced on nonabsorbing bodies

regardless of their sizes and shapes.
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It is well known that light can exert both conservative
and nonconservative forces. Full optical manipulation re-
lying on conservative forces and torques has been demon-
strated in a number of optical tweezing experiments [1].

Nonconservative torques can be created by breaking the
symmetry of a circularly polarized light field. As a result,
one can induce rotations of asymmetric, absorbing, and
birefringent objects [2] or even complex revolutions of
bodies that interact electromagnetically [3].

Nonconservative optical forces, on the other hand, are
traditionally associated only with the radiation pressure
proportional to the Poynting vector determining the flow
of momentum. Because they act only in the direction of
beam propagation, nonconservative optical forces have
been of limited interest for manipulation purposes.
Nevertheless, having full control on their direction and
strength could open new avenues for manipulation with
reduced optical power. Using only nonconservative forces
can eliminate the need for highly nonuniform fields with
rather high intensities in the focusing region, a fact that has
been recognized early on [4]. In addition, the range of
manipulation can be extended to significantly more
than a typical focal region which also means that optical
forces can be used to influence and control the dynamics of
larger objects. Moreover, besides the appealing flexibility
for mechanical manipulation, the nonconservative transfer
of energy may also permit unique examination of irrevers-
ible dissipative phenomena at micro and mesoscopic
scales.

We have recently shown that the action of nonconserva-
tive forces can be reversed in certain places within regions
of interfering Bessel beams [5]. In this case, the locations
where such ‘‘negative optical forces’’ exist can be associ-
ated with superoscillations associated with local energy
flows in the excitation field [6]. Because of the nature of
field superoscillations, these regions are positioned in the
vicinity of intensity minima and have spatial dimensions
smaller than the excitation wavelength [5]. Therefore, to
extend the flexibility and control the action of nonconser-
vative forces on larger objects, one must resort to a differ-
ent principle [7].

To understand why nonconservative forces are usually
pressure, not drag, forces, let us consider the situation
where a plane wave propagating along z direction is scat-
tered by an object. Part of the wave’s momentum is trans-
ferred to the scattered radiation that is deflected away and,
therefore, some of the initial momentum along z direction
is lost even for nonabsorbing objects. Because of momen-
tum conservation, the lack of wave momentum along z
after scattering should be compensated by the momentum
transferred to the scattering object. This means that during
any scattering event, the wave imparts a certain amount of
momentum to the scattering body creating a force acting in
the positive z direction, i.e., along the wave’s propagation.
This radiation pressure has been known to Maxwell and it
depends on the light intensity I and the objects’ reflectivity
R as p ¼ ðI=cÞð1þ RÞ where c is the speed of light. For
objects of specific shapes, the redistribution of light mo-
mentum can lead to unexpected movements of the object
such as the so-called ‘‘optical lift’’ [8]. Depending on the
scattering phase function, the radiation pressure can act in
a direction different than the incidence, a fact that is also
known from the theory of anisotropic scatterers [9].
However, in all these situations, some amount of momen-
tum along the direction of light incidence is lost and this
makes it impossible for a scattering object to move in a
direction opposite to that of the incident beam.
To increase the ‘‘forward’’ momentum resultant from

the scattering or, in other words, to create a negative force
on the object, one can use an active medium as suggested in
Ref. [10]. However, this approach is of limited practicality
as most objects do not manifest optical gain. Alternatively,
instead of artificially adding extra forward momentum to
the scattered field, one could try from the beginning
to input less momentum along z. The simplest way to
achieve this is by illuminating with waves that propagate
at some angle � with respect to the z axis and have the
nonabsorbing scattering object (the ‘‘black box’’ depicted
in Fig. 1) redirect these partial waves along the z axis.
Assuming that this ‘‘black box’’ does not produce addi-
tional scattered waves, the momentum conservation law is
simply kwave cos� ¼ kwave þ kbox and the force acting on
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the object becomes Fz ¼ ðP=cÞðcos�� 1Þ, where P is the
total optical power incident on the object. The resultant
force on the object is negative for any � � 0�.

One of the simplest situations that can illustrate this
concept is the case of two interfering plane waves

E ¼ 2E0 expðikzzÞ cosðkxxÞ; (1)

with kz ¼ k cos�, kx ¼ k sin�, and k ¼ 2�=� being the
wave number. The triangular prism shown in Fig. 2 serves
as the ‘‘black box’’: when the prism parameters are chosen
in such a way that, in the geometrical optics limit, all the
rays transmitted through the prism are deflected parallel to
the z axis, the final linear momentum of light along z
increases and, consequently, the prism will experience a
negative force Fz. Straightforward calculations based on
Snell’s law show that, in order to fulfill the forward scat-
tering condition for a prism of refractive index n, the angle
at the prism’s base and the angle of incidence of incoming

partial waves should be sin’ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8n2

p
þ 1Þ=4n and

sin� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8n2
pp

=
ffiffiffi
8

p
, respectively.

The illustration in Fig. 2 corresponds to a prism with
n ¼ 1:5 and ’ � 63� that is illuminated at an angle of
incidence � � 42�. The distribution of the electromagnetic
fields propagating through the prism was calculated nu-
merically using the finite elements method (COMSOL

MULTIPHYSICS v.3.5a). The overall optical force acting in

the prism was then evaluated using the standard Maxwell’s
stress tensor approach [11]. For a prism with a base area of
5 �m� 5 �m which is illuminated by an electromagnetic
field of wavelength � ¼ 532 nm, strength E0 ¼ 106 V=m,
and polarized perpendicularly to the x-z plane, the resultant
force acting on the prism along z direction is Fz ¼
�4:9 pN. The absolute value of this optical force may, of
course, be subject to losses due to both reflection on the
interfaces and diffraction at the edges. Such effects could
be minimized, for instance, using antireflection coatings
and more refined shape designs.
For a simply shaped object, this example demonstrates

that an appropriately designed field can act in such a way
that the overall optical force points in a direction opposite
to that of the incidence. This force is purely nonconserva-
tive and exists as long as the specified wave front is present.
For a sphere, the generation of negative forces has also
been theoretically investigated in the context of acoustic
Bessel beams [12]. However, an even more interesting
question could be asked. Can one tailor the incident field
such that objects of any shape can be ‘‘pulled’’ in a non-
conservative fashion? In the following, we will show that
this is indeed possible.
We will consider the general case of a multiply scatter-

ing, nonabsorbing object with dimensions larger than the
transport mean free path l� such that the original direction
of propagation of any incident photon is completely
randomized through the scatterer. As a result, this object
scatters light in all directions. In the far zone, the scattered
field will consist of uncorrelated spots (speckles) with
intensity and polarization randomly changing from one
speckle to another.
In principle, one can shape the incident wave front and

effectively convert the scattering object into a ‘‘diffraction
grating’’ that accepts radiation at different angles and
deflects it along the z axis. Practically, one can consider
the decomposition of the incident beam into plane waves
whose corresponding phases and polarizations can be ad-
justed in such a way that all the scattered partial waves
interfere constructively along the z direction. This is some-
what similar to transforming a random medium into a
useful optical component [13], such as, for instance, a
focusing lens [14].
Of course, different plane waves constituting the inci-

dent beam contribute differently to the force along z. For
instance, a plane wave traveling originally along the z axis
can create only a pushing force (� ¼ 0) while plane waves
incident perpendicularly to the z axis (� ¼ �=2) contribute
the most to the negative force Fz. Obviously, there should
be an angle of incidence �m at which the plane wave
contribution to Fz is zero; negative forces can be observed
only for � > �m.
Although negative forces can be achieved with beams

consisting of plane waves with different obliquity �, it may
sometimes be preferable to use beams having the same �. A

FIG. 2 (color online). Distribution of intensity during the
propagation of the wave in Eq. (1) through a triangular prism.
The black arrows indicate the local direction of power flow. The
surfaces of the prism are antireflection coated. The inset depicts
the rays’ propagation in the geometrical optics limit.
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FIG. 1 (color online). A generic optical device (‘‘black box’’)
converts the incident waves into waves propagating along the z
axis. As a result of the momentum conservation, a negative
optical force Fz will act on the ‘‘black box.’’
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field that can be decomposed in plane waves having all the
same obliquity � constitutes a so-called nondiffracting
beam [15]. In these conditions, the scattering object will
experience the same force independently of its absolute z
position, a situation that may be of particular interest in
practice.

Let us now estimate the minimum angle �m at which Fz

can still be negative. Let us assume that the random object
scatters light evenly into Ns independent channels corre-
sponding to the number of speckles in the far field. When
the incident beam is composed of Ni partial plane waves,
the momentum of light scattered along z direction due to
constructive interference of these partial waves is ksz ¼
ðPs=cÞN2

i =Ns, where Ps is the scattered power for one
particular plane wave. On the other hand, the total initial
momentum along z is kiz ¼ ðPs=cÞNI cos�. Thus, in order
for the electromagnetic momentum to increase due to
scattering, the condition cos� � Ni=Ns should be fulfilled.

Assuming that the correlation areas of intensity, phase,
and polarization in the far field have similar values, the
number of speckles Ns can be estimated as follows. From
the far field, the scattering object is seen as a spatially
incoherent field distributed within a localized aperture of
finite area A. At a distance Z from this aperture, the field
correlation area (the speckle size) is of the order of Ac ¼
ð�ZÞ2=A [16] and the total number of speckles can be
estimated to be

Ns ¼ 4�Z2=Ac ¼ 4�A=�2: (2)

Because one such speckle subtends a solid angle �� ¼
4�=Ns, the partial plane waves of the excitation field
should also be separated by no less than ��. Having the
same total excitation power distributed over more closely
angularly spaced partial waves will not help in enhancing
the scattering along a particular direction because all the
waves propagating within �� are almost in phase anyway
and behave effectively as one single plane wave.

The total number of excitation plane waves can now be

evaluated to be Ni ¼ 2�
ffiffiffiffi
A

p
sin�=� which represents the

number of waves distributed on the surface of a cone with
an apex angle 2� as illustrated in Fig. 3. Using these
estimates, one finds that the angle of illumination is limited

to cot�m ¼ �=ð2 ffiffiffiffi
A

p Þ.

In general, because the scattering from inhomogeneous
objects is complicated and not isotropic [17], one has to use
numerical methods to describe the details of the process.
We performed such calculations and considered aggregates
consisting of spherical elements having all the same radius
r as illustrated in Fig. 3. The scattering from such aggre-
gates was calculated using a multiple sphere T-matrix
FORTRAN code [18]. For the example discussed in this

Letter, 160 spheres with size parameter kr ¼ 1 and refrac-
tive index n ¼ 3 were randomly distributed within the
spherical volume with size parameter kR ¼ 10 (R � 7l�).
Wave vectors of 24 incident plane waves having the

same kz component (angle to the z axis � ¼ 84�) were
uniformly distributed in the k space as shown in Fig. 3. The
plane waves had all the same amplitude E0=

ffiffiffiffiffiffi
Ni

p
such that

the total power was independent of their number; E0 was
chosen to be 106 V=m. The amplitude scattering matrices
were calculated along 2562 scattering directions for each
of the 24 incident plane waves. The angular distribution of
the scattered field in the forward scattering hemisphere is
shown in Fig. 4(a) for the case where all the plane waves
constituting the illuminating beam are in phase. The ring of
high field amplitude (close to the outer rim in Fig. 4)
corresponds to the forward scattering direction for each
partial plane wave [17]. To maximize the scattering along

FIG. 3 (color online). Cluster of 160 spheres used in
the scattering calculations and the considered geometry of
illumination.

FIG. 4 (color online). Angular distribution of scattered electric
field amplitude jfj in the forward scattering hemisphere of the
cluster in Fig. 3 when illuminated by a nonoptimized (a) and
optimized (b) beam as described in the text.
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the z axis, we adjusted the polarization and phase of each
plane wave in such a way that the x components of all
partial fields scattered along z direction are maximized
and in phase. The resulting scattering pattern is shown in
Fig. 4(b). One can clearly see the spot of enhanced scat-
tering located at zero polar and azimuthal angles, i.e.,
along the direction of the beam’s propagation.

To calculate the optical forces based on the amplitude of
the scattering matrix, we generalized the concept described
in Ref. [9] to the case of illumination with arbitrary beams.
The final expression for the optical force is

Fopt ¼ � "0
2k2

Z
�
jfðk̂s ¼ r̂; fk̂IigÞj2r̂d�

þ 2�"0
k2

XNI

i¼1

k̂Ii Im½fðk̂s ¼ k̂Ii; fk̂IigÞ �E�
Ii�; (3)

where fðk̂s; fk̂IigÞ denotes the scattered field in the far zone

Es ¼ ½expðikrÞ=ðkrÞ�fðk̂s; fk̂IigÞ. The integration in Eq. (3)
is performed over 4�, and r̂ is a unit vector corresponding
to the angle of integration. The scattering amplitude

fðk̂s; fk̂IigÞ depends both on the direction of scattering k̂s
and the directions of propagation of each partial wave k̂Ii.

The integral in Eq. (3) was calculated numerically as a
summation over all the 2562 scattering directions.
Because, according to formula (2), the total number of
speckles in the far field of the aggregate is Ns � ðkRÞ2 ¼
100, a number of 2562 sampling points provides a good
estimation of the integral. In these conditions, the calcu-
lated optical force for the nonoptimized beam is Fz ¼
1:5 pN. When illuminating with the optimized beam, the
optical force along the z direction becomes negative and
equals to Fz ¼ �0:24 pN.

In conclusion, based on the principle of conservation of
linear momentum, we have demonstrated that the noncon-
servative optical forces acting on a scattering object can be
manipulated at will. In particular, we have shown that a
negative, nongradient force can be generated not only in
simple cases where the interaction obeys geometrical op-
tics laws but also in the case of arbitrary scattering bodies
without limitation of their shapes or structural morphology.

The structured illumination beam discussed in this
Letter consists of the plane waves having the same longi-
tudinal component of the wave vector. This makes the
beam nondiffracting [15] and ensures that the negative
optical force is maintained along the entire extent of the
beam. The structured illumination concept introduced here
can be further improved. More elaborate optimization
procedures that not only maximize scattering in the desired
direction, but also minimize scattering along other direc-
tions can be used to control the angle of convergence for
partial plane waves and the entire structure of the beam.

Negative forces were also observed in solenoid type
beams [19]. However, in that case the negative force ap-
pears due to the gradient part of the optical force.

Even though we have discussed only the effect of axial
forces, it is straightforward to show that transversal optical
forces can be similarly manipulated by changing the am-
plitudes of partial plane waves. This should allow access to
a complete range of translations and rotations which are
not discussed in this Letter. Moreover, structured illumi-
nation can augment the scattering in any direction, not only
forward. Enhancing scattering in the direction opposite to
the beam’s propagation, for example, leads to increasing
the radiation pressure force, while enhancing the �=2
scattering would create a transversal effect. Thus, our
general approach based solely on the action of nonconser-
vative optical forces permits arbitrary manipulation
of objects by optimizing the shape of the excitation beam
to fit the structure of the manipulated body. As the shape
of the beam is specific to the object’s orientation, manipu-
lating a complex structure will require monitoring its cur-
rent orientation and adjusting the phases of the partial
waves.
This work was partially supported by the Air Force

Office of Scientific Research.
Note added.—An account of various phenomena leading

to optical forces pointing against the main stream of pho-
tons can be found in [5]. After submission of this Letter,
additional publications have been brought to our attention,
which discuss physical situations leading to anomalous
behavior of optical forces [20].
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