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We show that three-band superconductors with broken time reversal symmetry allow magnetic flux-

carrying stable topological solitons. They can be induced by fluctuations or quenching the system through

a phase transition. It can provide an experimental signature of the time reversal symmetry breakdown.
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Experiments on iron pnictide superconductors suggest
the existence of more than two relevant superconducting
bands [1,2]. The new physics which can appear in these
circumstances is the possible superconducting states with
spontaneously broken time reversal symmetry (BTRS) as a
consequence of frustration of competing interband
Josephson couplings [2] (other scenario for BTRS state
was discussed in [3]). BTRS states also attracted much
interest earlier in the context of unconventional spin-triplet
superconducting models. There they have a different origin
and are described by two-component Ginzburg-Landau
models [4]. In those cases the theory predicts domain walls
which pin vortices [4]. It was suggested that this can result
in formation of experimentally observable vortex sheets if
(i) a domain wall itself is pinned by sample inhomogene-
ities, or (ii) if a domain is dynamically formed inside a
current-driven vortex lattice [4].

Here we show that a BTRS state in a three-band super-
conductor allows formation of metastable topological sol-
itons. Although it is not by any means required to be near
Tc for these solitons to exist, we use a static three-band
Ginzburg-Landau (GL) free energy density model:
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Here,D ¼ rþ ieA, and c i ¼ jc ijei’i are complex fields
representing the superconducting components. We choose
to work here with a minimal effective potential V �P

i¼1;2;3�ijc ij2 þ 1
2�ijc ij4. Although there could be

various other terms allowed by symmetry in (1) they are
not qualitatively important for the discussion below. For
�ij > 0, the Josephson interaction term is minimal for

zero phase difference, while �ij < 0 it is minimal for ’i �
’j ¼ �. When the signs of �ij coefficients are all positive,

[we denote it as (þþþ )] the ground state has ’1 ¼
’2 ¼ ’3. Similarly in case (þ�� ) one has phase lock-
ing pattern ’1 ¼ ’2 ¼ ’3 þ �. However, in cases
(þþ� ) and (��� ) there is a frustration between the
phase locking tendencies [i.e., one cannot simultaneously

satisfy cosð’i � ’jÞ ¼ �1]. For example, consider the

case �i ¼ �1, �i ¼ 1 and �ij ¼ �1. Without loss of

generality lets set ’1 ¼ 0 then two ground states are
possible ’2 ¼ 2�=3, ’3 ¼ �2�=3 or ’2 ¼ �2�=3,
’3 ¼ 2�=3. Thus, in these frustrated cases there is Z2

broken symmetry in the system associated with complex
conjugation of the all c fields. The broken Z2 symmetry
implies existence of domain walls solutions, which are
schematically shown on Fig. 1. Note that the frustrated
phase differences can assume values different from 2�n=3
in case of differing effective potentials or Josephson
coupling strengths.
Let us now outline basic properties of the model (1).

Without intercomponent Josephson coupling and �i < 0,
its symmetry is ½Uð1Þ�3. Then it allows three kinds of
fractional flux vortices with logarithmically diverging
energy [5] characterized by a phase winding in (i.e., inte-
gral over a phase gradient around a vortex) �’i �H
� r’i ¼ 2�. Such a vortex carries a fraction of magnetic

flux quanta (�0), given by �i ¼ jc ij2=ðjc 1j2 þ jc 2j2 þ
jc 3j2Þ�0. However, a bound state of three such vortices
(i ¼ 1, 2, 3) has a finite energy. The finite-energy bound
state is a ‘‘composite’’ vortex which has one core singu-
larity where jc 1j þ jc 2j þ jc 3j ¼ 0. Around this core all
three phases have similar winding �’i ¼ 2�. Thus it is a
logarithmically bound state of fractional vortices whose
flux adds up to one flux quantum �0. In case of nonzero
Josephson coupling fractional vortices are bound much
stronger since they interact linearly [5].

FIG. 1 (color online). Schematic representation of various Z2

domain walls in three-band superconductors with different frus-
trations of phase angles, shown by arrows of different colors.
Pink line schematically shows phase difference between red and
green arrow, interpolating between the two inequivalent ground
states.
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We show below that the model (1) remarkably has a
different kind of stable topological excitations distinct
from vortices. Note that in two-component superconduc-
tors Skyrmion and Hopfion topological solitons can be
represented as bound states of two spatially separated frac-
tional vortices [6]. Likewise we can represent a topological
soliton carrying N flux quanta (i.e., with each phase wind-
ing 2�N) in a three-component superconductor like a
stable bound state of spatially separated 3N fractional

vortices. Below we will call it ‘‘GLð3Þ soliton.’’ At first
glance, split fractional vortices could not be stable in the
model (1) because of the strong linear attractive interaction
between fractional vortices caused by Josephson couplings.
However, we show that such solutions exist as topologi-
cally nontrivial localminima in the energy landscape of the
model (1). These solutions may also be viewed as combi-
nations of fractional vortices and closed domain walls.

Domain walls can form dynamically by a quench, but
due to its line tension a single Z2 closed domain wall (i.e., a
domain-wall loop) should rapidly collapse. Because of the
field gradients, the superfluid density is suppressed on a
domain wall. Therefore it can pin vortices. Furthermore, at
a domain wall one has energetically unfavorable values of
cosines of phase differences cosð’i � ’jÞ. Thus Josephson
terms immediately at the domain wall energetically prefer
to split integer flux vortices into fractional flux vortices
since it allows to attain more favorable phase difference
values in between the split fractional vortices. (Note that,
away from domain walls, Josephson terms give in contrast
attractive interaction between fractional vortices). We find
that if the magnetic field penetration length is sufficiently
large, then there is a length scale at which repulsion
between the fractionalized vortices pinned by domain-
wall counterbalances the domain-wall’s tension. It thus
results in a formation of a stable topological soliton
made up of 3N fractional vortices. Thus these topological
solitons represent a closed Z2 domain wall along which
there are N points of zeros of each condensate jc ij.
Around each of these zeros the phase ’i changes by 2�.
The total phase winding around the soliton is

Hr’1dl ¼Hr’2dl ¼ Hr’3dl ¼ 2�N. Therefore it carries N flux

quanta.
Since it is a complicated nonlinear problem, no analyti-

cal tools are available and thus a conclusive answer if these
solitons are stable could only be obtained numerically.
We performed a numerical study based on energy minimi-
zation using a nonlinear conjugate gradient algorithm

showing the existence and stability of the GLð3Þ solitons.
Technical details of numerical calculations are available
as supplementary online material [7]. The general ten-
dency which we observed is, that in contrast to most of the
known topological solitons, they are more stable at higher
topological charges. In fact we did not find any stable
solitons for the lowest topological charge corresponding
to enclosed one quanta of magnetic flux (N ¼ 1) in the

model (1). The lowest topological charge solutions we
found carry two flux quanta, and thus consist of six frac-
tional vortices residing on a closed domain wall. The Fig. 2
shows the N ¼ 2 soliton in a superconductor with two
passive bands (thus in this respect, similar to the models
which are believed to be relevant for iron pnictide) coupled
to an active band. Although it consists of six fractional
vortices, one of the bands in this example has larger density
and thus the magnetic field has two pronounced peaks near
singularities in the main band. This is because the frac-
tional vortices in that band carry the largest amount of the
magnetic flux �3 ¼ jc 3j2=½jc 1j2 þ jc 2j2 þ jc 3j2�. So
the magnetic field profile of this soliton resembles a vortex
pair. We similarly found N ¼ 2 solitons for superconduc-
tor with three passive bands and for three active bands
which was not qualitatively different from the one shown
on Fig. 2.
We find that solutions with larger number of flux quanta

tend to have ringlike shapes. The Fig. 3 gives an example

FIG. 2 (color online). N ¼ 2 topological solitons for two
similar passive bands ð�i; �iÞ ¼ ð1; 1Þ with interband coupling
�12 ¼ �3. These bands have Josephson coupling�13 ¼ �23 ¼ 1
to the third band,which is active ð�3; �3Þ ¼ ð�2:5; 1Þ. The system
is type-II with e ¼ 0:07 [we use coupling constant e in (1) to
parametrize inverse penetration length]. The panelA displays the
magnetic field B. Panels B and C respectively display ðc �

1c 2 �
c 1c

�
2Þ=2i and ðc �

1c 3 � c 1c
�
3Þ=2i, showing the phase difference

between two condensates. Second line, shows the densities of the
different condensates jc 1j2 (D), jc 2j2 (E), jc 3j2 (F). The third
line displays the supercurrent densities associated with each
condensate jJ1j (G), jJ2j (H), jJ3j (I). Phase differences on panels
B and C show that there is a closed domain wall since there are
two areas with different phase lockings (blue and red) associated
with two possible ground states. The solution consists of N ¼ 2
vortices which are fractionalized: indeed, the panels D, E, and F
show separated highly asymmetric pairs of singularities of differ-
ent condensates. Note the very complicated geometry of super-
current densities shown on panels G, H, and I.
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of a solution with N ¼ 8 flux quanta. Note that this object
will have a very distinct magnetic signature which can be
distinguished by scanning SQUID or Hall or magnetic
force microscopy. Despite the fact that this object is a
bound state of 24 fractional vortices, the magnetic field
has only 8 pronounced maxima. They coincide with the
position of the 8 singularities in the band with the largest
density.

The magnetic structure of the soliton always clearly
reflects the relative densities the bands. When the ground
state densities in each band are equal, the magnetic field
has a uniform ringlike geometry as shown on Fig. 4.

When disparity of the densities in different bands is
small there is also a family of N quanta solitons which
have 2N pronounced maxima in the magnetic field. An
example with N ¼ 4 is shown on Fig. 5.

We investigated numerically more than 500 parameter
sets in three-component BTRS GL models. For all type-II
three-component BTRS GL models we found stable

GLð3Þ solitons, provided the topological charge was large
enough. The solution existed in BTRS states irrespectively
of whether bands are active or passive and for very differ-
ent effective potentials and interband coupling strengths.
It indicates that these solitons should be rather generic
excitations in three-component type-II BTRS supercon-
ductors. Figure 6 shows the energy and stability of the
solitons for different values of the coupling constant e (in
our parametrization e controls the inverse magnetic field
penetration length). It reflects the generic tendency which
we find, that the solitons are more stable in more type-II
regimes and also at higher topological charges.

Lets us now address the physical observability of these
solitons. First in all the cases which we studied in the
model (1), the solitons with N flux quanta were more
energetically expensive than N isolated one-quanta vorti-
ces. However, they are protected by an energy barrier
against decay into ordinary vortices. Note that because
the solitons are obtained as solutions of the energy mini-
mization problem, they are guaranteed to be stable
against infinitesimally small perturbations. However,
since they are more energetic than vortices, strong enough

FIG. 3 (color online). N ¼ 8 quanta soliton for the same
parameter set as in Fig. 2 except that e ¼ 0:3 and ð�3; �3Þ ¼
ð�1:5; 1Þ, giving less disparity in the ground state densities
(displayed quantities are the same as in Fig. 2). The cores of
vortices in each bands do not coincide. Note the complicated
structure of currents in each band.

FIG. 4 (color online). N ¼ 5 quanta soliton with e ¼ 0:3. With
three identical passive bands ð�i; �iÞ ¼ ð1; 1Þ, with supercon-
ductivity induced by repulsion �ij ¼ �3 between the three

condensates. Displayed quantities are the same as in Fig. 2.

FIG. 5 (color online). N ¼ 4 quanta soliton for two similar
passive bands coupled to a third active band. The parameter set
used here is the same as in Fig. 3 except ð�3; �3Þ ¼ ð�0:5; 1Þ
and e ¼ 0:2. Displayed quantities are the same as in Fig. 2.
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perturbation should destabilize them. This stability ques-
tion is addressed numerically in the supplementary
material [7]. For strongly type-II regime the potential
barrier can be estimated as the energy needed to disconnect
the domain wall. For a soliton in a three-dimensional
sample with phase winding in the xy plane the potential
barrier can be estimated as ½coherence length�2�
½sample size in the direction of applied magnetic field��
½condensation energy density�.

Being more expensive than vortices, these objects can-
not form as a ground state in low external field [8].
However, as demonstrated in Fig. 6, they are not much
more energetically expensive than vortices. In fact the
corresponding energy differences can be just a few percent.

Thus they can be excited by either by (a) thermal fluctua-
tions or (b) by quenching in a sample subjected to a
magnetic field. To address the scenario (b) of possible
formation of these solitons in a post-quench relaxation,
we have to assess ‘‘capture basin’’ of these solutions (i.e.,
how large is the area in the free energy landscape from
which an excited system would relax into the local mini-
mum corresponding to a soliton. Although studying real
post-quench relaxation dynamics is beyond the scope of
this Letter, nonetheless we can directly assess the capture
basin of the solutions from the evolution of the system in
our relaxation scheme (see also remark [9]). We investi-
gated several hundreds regimes and found that solitons
typically easily form when a system is relaxed from vari-
ous higher energy states. This indicates that the capture
basin of these solutions is typically very large. We find that
these defects in fact very easily form during a rapid ex-
pansion of vortex lattice (which should occur when mag-
netic field is rapidly lowered, or if a system is quenched
through Hc2). A typical example is shown on Fig. 7.
Animations of these processes are available as a supple-
mentary online material [7].
In conclusion, we have shown that BTRS state of a

three-band superconductor can be detected through its
magnetic response. Namely, we have demonstrated that
in this state the system has two kinds of flux-carrying
topological defects : ordinary vortices and also a different
kind of topological solitons. These solitons are only
slightly more energetically expensive than vortices
(in some cases we found the energy difference as
small as 10�2Ev where Ev is the energy of a vortex).
They should form during a post-quench relaxation
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FIG. 6 (color online). Energies of the solitons per flux quanta,
in the units of the energy of a single ordinary vortex (left). When
the electric charge increases (i.e., the penetration length de-
creases) solitons with smaller N become unstable. The right
panel shows cross sections of the magnetic field for solitons with
N 2 [2,9] (double-peak curves). The central curve corresponds
to a cross section of a regular N ¼ 1 vortex. The parameters of
the Ginzburg-Landau model used here are the same as in Fig. 4,
which gives nearly axially symmetric magnetic field.

FIG. 7 (color online). The soliton formation during energy relaxation of an initial state of expanding group of vortices in a circular
system with open boundary conditions. First line displays the energy density. Second line shows the phase difference between
condensates ðc �

1c 2 � c 1c
�
2Þ=2i. When domain walls form they separate two inequivalent ground states (blue and red). Third line is

the density of the first condensate jc 1j2. Initial configuration has a high density of 13 vortices in the center. Repulsive type-II
interaction makes all vortices move away from each other and escape the sample. In the process of energy minimization domain walls
and GLð3Þ solitons form. Domain wall connected to boundaries quickly disappear. The final picture shows the resulting long-living
state of a well-separated N ¼ 4 GLð3Þ soliton and a vortex. Parameter set used here is the same as in Fig. 4, with e ¼ 0:4.
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of a BTRS superconductor in an external field, since
they represent local minima with a wide capture basin
in the free energy landscape. I.e., a system should
relax to these local minima from a wide variety of excited
states. Then these solitons can be observed in scanning
SQUID, Hall, or magnetic force microscopy measure-
ments. They can provide an experimental signature
of possible BTRS states in iron pnictide superconductors.
A tendency for vortex pair formation, yielding magnetic
profile similar to that shown on Fig. 2 was observed
in BaðFe1�xCoxÞ2As2, [10] as well as vortex clustering
in BaFe2�xNixAs2 [11]. These materials have strong
pinning which can naturally produce disordered vortex
states [11], although a possibility of ‘‘type-1.5’’ scenario
for these vortex inhomogeneities was also voiced in
[11]. The vortex pairs observed in [10] can be discrimi-
nated from N ¼ 2 solitons (such as that shown on
Fig. 2), by quenching the system and observing whether
or not it forms vortex triangles, squares, pentagons
etc. corresponding to higher-N solitons.
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