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We study a model for coupled networks introduced recently by Buldyrev et al., [Nature (London) 464,

1025 (2010)], where each node has to be connected to others via two types of links to be viable. Removing

a critical fraction of nodes leads to a percolation transition that has been claimed to be more abrupt than

that for uncoupled networks. Indeed, it was found to be discontinuous in all cases studied. Using an

efficient new algorithm we verify that the transition is discontinuous for coupled Erdös-Rényi networks,

but find it to be continuous for fully interdependent diluted lattices. In 2 and 3 dimensions, the order

parameter exponent � is larger than in ordinary percolation, showing that the transition is less sharp, i.e.,

further from discontinuity, than for isolated networks. Possible consequences for spatially embedded

networks are discussed.
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While the theoretical study of single networks has ex-
ploded during the last years, relatively little work has been
devoted to the study of interdependent networks. This is in
stark contrast to the abundance of coupled networks in
nature and technology—one might, e.g., think of people
connected by telephone calls, by roads, by their work
relationships, etc. For single networks it is well known
that removing nodes can lead to cascades where other
nodes become dysfunctional too [1], and deleting a suffi-
cient fraction of nodes leads to the disappearance of the
giant connected cluster. If the network is already close to
the transition point, deleting a single node can lead to an
infinite cascade similar to the outbreak of a large epidemic
in a population.

Assume now that all nodes have to be connected via
different types of links in order to remain functional. It was
argued in [2] that in such cases the cascades of failure
triggered by removing single nodes should be greatly
enhanced, and that the transition between existence and
nonexistence of a giant cluster of functional nodes should
become discontinuous. This claim was backed by a mean
field theory that becomes exact for locally treelike net-
works [e.g., large sparse Erdös-Rényi (ER) networks], and
by numerical simulations for various types of network
topologies. In the present Letter we show that this view
is not entirely correct: For fully interdependent diluted
d-dimensional lattices, the transition is not only continu-
ous, but it is less sudden than the ordinary percolation (OP)
transition for isolated lattices and represents a new univer-
sality class.

The problem is best illustrated by an actual case dis-
cussed in [2], which concerns an electric power blackout in
Italy in September 2003 [3]. According to [2] (see also
[4,5]), the event was possibly triggered by the failure of a
single node i0 in the electricity network. Nodes in power
networks are in general also linked by a telecommunica-
tion network (TN) and need to receive information about

the status of the other nodes. In the present case, presum-
ably some nodes in the TN failed, because they were not
supplied with power. This then led to the failure of more
power stations because they did not receive the necessary
information from i0, of more TN nodes because they were
not supplied with electric power, etc. The ensuing cascade
finally affected the entire power grid.
The crucial point here is that each node has to be

connected to two distinct networks that provide different
services, in order to be viable. At the same time nodes act
as bridges to bring supply to other nodes. If a node gets
disconnected from one network, it no longer can function
and loses also its ability to serve as a connector in the other.
The claim in [2], to be scrutinized here, is that these
cascades of failure are much more abrupt in interdependent
networks than in isolated ones, leading to much sharper
transitions.
In a single network, the existence of an ‘‘infinite’’ cluster

of nodes, making possible the outbreak of a large epidemic,
is described by OP. Whether such a large outbreak can
happen depends on the average connectivity of the net-
work, characterized by some parameter p. If p is below a
critical value pc, no infinite epidemic can occur, while it
occurs with probability P> 0 if p > pc. For p slightly
above pc, both P and the relative size of the epidemic in a
large but finite population scale �ðp� pcÞ�, where the
order parameter exponent � depends on the topology of
the network. For ER networks � ¼ 1, while for randomly
diluted d-dimensional lattices � depends on d, with
�ðd ¼ 2Þ ¼ 5=36 � 0:1389 [6] and �ðd¼3Þ¼0:4170ð3Þ
[7]. In all these cases �> 0, meaning that the transition is
continuous. A discontinuous transition, as found in [2,5],
would correspond to � ¼ 0.
Discontinuous percolation transitions have recently

been claimed to exist in several other models [8,9], includ-
ing explosive percolation [8]. The numerical evidence for
discontinuity given in [8] was supported in numerous
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papers. It became clear only recently that the transition is
actually continuous, although with small � and with un-
usual finite size behavior [10]. In view of the difficulty to
distinguish numerically between a truly discontinuous
transition and a continuous one with very small �, we
decided to perform more precise simulations.

The algorithm used in [2] follows in detail the cascades
triggered by removing nodes and, as a result, does not
allow one to study large networks with high statistics. In
our simulations, instead of removing nodes, we add nodes
one by one. Using a modification of the fast Newman-Ziff
algorithm [11], this gives a code which no longer follows
entire cascades, as they are broken up into short subcas-
cades, and gluing them together would make the algorithm
slow again. But it allowed us to obtain high statistics for
reasonably large systems.

The model is formally defined as follows: Start with a
single setN of N nodes and with two networksA and B
that are obtained by linking these nodes (notice thatA and
B need not be connected, and indeed some nodes in N
may be not connected at all, in which caseA andB make
use only of subsets of N ; also we do not demand that all
links inA andB are different). Typically, we constructA
and B by starting with a dense network and deleting
randomly links from it, keeping links only with probability
q < 1. In this way, ER networks are constructed by starting
with a complete graph and keeping only L¼qNðN�1Þ=2
links. Alternatively, diluted regular d-dimensional lattices
are obtained by starting with a (hyper-)cubic lattice with
N ¼ Ld nodes and helical boundary conditions, and keep-
ing only a fraction q of the dN links.

On these coupled networks (each obtained by bond
percolation with parameter q), we study a site percolation
problem by retaining only a fraction p of all nodes, calling
the set of retained nodes N p. We define AB clusters as

subsets of nodes2 N p that are connected both inA and

in B. More precisely, assume that C ¼ fi1; i2; . . . ; img is a
subset of nodes in N p. We call it a (connected AB )

cluster, if any two points i 2 C and j 2 C are connected
by (at least) two paths: one path using only links2 A, and
nodes only 2 C, and another path using only links 2 B,
also using nodes only 2 C. Notice that we do not allow
paths that involve nodes outside C, i.e., AB clusters are
‘‘self-sustaining.’’ The ‘‘order parameter’’ S ¼ mmax=N is
then the relative size of the largestAB cluster, for given p
and q.

To find these maximal clusters, we start with an empty
initial configuration with no nodes but with a list of all
possible links inA andB, and setmmax ¼ 0. Then we add
nodes one by one. Each time a new node i is added, (a) We
check whether it is linked to any of the existing nodes. If it
is not linked to any other node either by A or by B links,
we simply insert the next node. (b) Otherwise, we update
the cluster structures in A and B separately by means of
the Newman-Ziff algorithm, and denote the sets of nodes

linked to i by CA and CB. If one of them has size� mmax,
then mmax cannot increase and we insert the next node. If
not, we check whether the biggest AB cluster in
CA

T

CB can have a size >mmax, by following a cascade
similar to that in [2]. If the cascade stops at a cluster size
>mmax, then mmax is increased. If it continues to a size
� mmax, the cascade is stopped andmmax is left unchanged.
In either case, we then insert the next node. (c) This process
continues until a preset value pmax is reached. Stopping at
p < 1 is crucial for efficiency, as the algorithm slows down
dramatically at large p. We typically follow the evolution
up to p slightly above pc for all realizations, and follow it
up to larger values of p for successively fewer runs. This
reflects the fact that simulations are slow for p � pc, but
fluctuations are also smaller, so that fewer samples are
sufficient.
For ER graphs the model can be simplified, since bond

and site dilution both lead again to ER graphs. Hence we do
not have to distinguish between them and can skip the site
percolation part. The order parameter S ¼ mmax=N is then,
in the limit N ! 1, a unique function of the average
degree hki. This function is easily found by arguments
analogous to those for single networks.
Consider an isolated ER network with average degree

hki ¼ z in the regime where an infinite cluster exists, i.e.,
where an infection has a nonzero chance to lead to an
infinite epidemic. Let Si be the probability that node i
gets infected during this epidemic. The probability that i
does not get infected is then

1� Si ¼
Y

hiji
ð1� S0jÞ; (1)

where the product runs over all neighbors of i. Here, S0j is
the probability that j is infected, conditioned on it being
picked as a node at the end of a link, and we used the fact
that the graph is locally treelike, so all S0j are independent.
For ER graphs the degree distribution is Poisson, and S0
and S obey the same statistics. Averaging Eq. (1) over all
nodes and topologies gives then [12,13]

1� S ¼ X

k

e�zzk

k!
ð1� SÞk ¼ e�zS; (2)

where we dropped the index on S. Otherwise said, the
probability S that any site is linked to the infinite cluster
is 1� expð�zSÞ. For two interdependent ER networks
with average degrees zA and zB, the chance to belong to
the infinite AB cluster is equal to the probability to be
linked to it both via A and via B, giving

S ¼ ð1� e�zASÞð1� e�zBSÞ: (3)

Although this is much simpler than the theory presented in
[2], it is exactly equivalent. It is generalized trivially to>2
interdependent networks [14], and to other types of inter-
dependencies [15]. If zA ¼ zB ¼ z, one finds only the
solution S ¼ 0 for z < zc ¼ 2:455 407 . . . , while a second
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stable solution S > 0 exists for z > zc. Just above thresh-
old, Sc ¼ 0:511 699 . . . .

Results from our numerical simulations for ER graphs,
using the algorithm outlined above, are shown in
Figs. 1 and 2. Figure 1 shows S versus z for networks of
different sizes. Each curve is based on 104 runs, except for
the largest N. The data indeed approach the theoretical
curve (indicated in grey), as N ! 1. While Fig. 1 demon-
strates that the theory gives the correct zc, it is much harder
to argue that it gives also the correct Sc. To see this, we
notice that mmax=N makes in each run exactly one big
jump, from � 0 to � Sc. The values of z and S just after
the jump are shown as scatter plots in Fig. 2. We see clouds
of points that are indeed centered near zc and Sc, and whose
sizes decrease with N.

For bond percolation on the square lattice, the OP
threshold is at qc ¼ 1=2 [6]. We therefore look for AB
percolation in the parameter range 1=2< q< 1. We as-
sume the usual finite size scaling (FSS) ansatz [6]

hmmaxi ¼ LDffððp� pcÞL1=�Þ; (4)

where � is the correlation length exponent,Df ¼ d� �=�

is the fractal dimension of the incipient infinite cluster, and
fðzÞ is a smooth (indeed analytic) function. According to
this ansatz, we expect a data collapse if we plot

hmmaxi=LDf against ðp� pcÞL1=�. Three such data collap-
ses are shown in Fig. 3, each for a different value of q. Each
of the three ‘‘curves’’ in this figure are indeed several
collapsed curves corresponding to different values of L
in the range 25 to 29, obtained from more than 106 realiza-
tions for the smallest lattice and � 104 for the largest. For
all curves the same values ofDf and � were used, while pc

depends of course on q. The values of pc are plotted
against q in Fig. 4.
The fact that data collapse was obtained in Fig. 3 for

q-independent values of the exponents indicates that these
exponents are universal for qmin � q < 1. But a closer

FIG. 1 (color online). Plot for S ¼ hmmaxi=N against z, for two
interdependent ER networks with degrees zA ¼ zB ¼ z. For
technical reasons, each curve does not correspond to a fixed
value of N, but of N0 ¼ 4N=z. The grey curve is the solution of
Eq. (3). The intersection of the horizontal and vertical lines
indicate the point (zc, Sc).

FIG. 2 (color online). Scatter plot for mmax=N against z, just
after the largest jump in mmax. Color corresponds to a fixed value
of N. The lines indicate the analytic prediction for the point (zc,
Sc), according to Eq. (3).
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FIG. 3 (color online). Data collapse for hmmaxi=LDf against
ðp� pcÞL1=�, for 2D lattices. Each set of curves corresponds to
one value of q, while each curve within each set corresponds to a
system size L. For this plot, � ¼ 1:19 and Df ¼ 1:85 were used,

and the values of pc are 0.960 25, 0.775 56, and 0.6544 for q ¼
0:6, 0.75, and 0.9. Because of universality of the scaling function
fðzÞ we can also collapse the three sets of curves, by multiplying
mmax=L

Df and ðp� pcÞL1=� by suitable q-dependent factors
(data not shown).
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FIG. 4 (color online). Critical values pc versus q for two
coupled 2D lattices. Error bars are much smaller than the symbol
sizes. Notice that the bond percolation threshold on the square
lattice is qc ¼ 1=2, thus the curve cannot extend below q < 0:5.
The transition is in the same universality class even for q ¼
qmin ¼ 0:5757ð4Þ, where pc ¼ 1 and the model simplifies, as no
site percolation is involved. For q ! 1, the model crosses over
to OP.
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inspection of Fig. 3 shows that the quality of the collapse
deteriorates as q ! 1, due to the expected crossover to OP
(for q ! 1, A and B become identical, and the problem
crosses over to OP). Thus we use data for q ¼ 0:6 for more
detailed analyses. Figure 5 shows that mmax � LDf for
pc ¼ 0:96025ð20Þ, with Df ¼ 1:850ð5Þ, while Fig. 6

shows that mmax � ðp� pcÞ� in the limit L ! 1, with
� ¼ 0:172ð2Þ (for a plot with higher resolution see the
Supplemental Material [16]). Both exponents are clearly
different from the values for OP. Indeed, � is larger than
the value 5=36 ¼ 0:1389 for OP, showing that the transi-
tion is not more abrupt than in OP, as claimed in [2], but
less so.

For d ¼ 3 we also studied systems of up to 218 sites,
with roughly the same number of realizations as for 2D,
and with similar results (see [16] for details): There are
also important corrections to scaling, if q is taken too large,
but they decrease strongly when q is taken as small
as possible. For q ¼ 0:40 we obtain pc ¼ 0:871ð1Þ,
� ¼ 0:51ð1Þ, � ¼ 0:86ð1Þ, and Df ¼ 2:40ð1Þ. These val-

ues satisfy (like the 2D exponents) the scaling relation

Df ¼ d� �=�, and again they are incompatible with OP

(where � ¼ 0:4170ð3Þ, � ¼ 0:8734ð5Þ, Df ¼ 2:5226ð1Þ
[7]). As in 2D, � is clearly larger than in OP, indicating
that the transition is again less sharp, rather than more
abrupt.
In summary, we have shown that coupling two interde-

pendent networks does not generically make the percola-
tion transition more abrupt or discontinuous. Rather, the
outcome depends on the network topologies. Real net-
works (e.g. transportation, telephone,. . .) often are locally
embedded in space, thus their behavior could resemble
more that of regular lattices than that of small world net-
works (this is a completely open problem). The reason why
the claim of [2] does not hold universally is not that the
cascade picture breaks down for local networks. Rather,
cascades are an essential ingredient in any spreading phe-
nomena on any network, and it depends on the topology
whether or not their effects are enhanced by the coupling
between different networks.
In the present Letter we have only studied two statisti-

cally identical networks. It is an open question what hap-
pens, say, when a diluted 2D lattice is fully coupled to an
ER network or a scale-free one. Also, one might think of
more than 2 interdependent networks [14]. In view of
possible applications, one should also study networks
that are semilocally embedded in 2D space. The latter
could also be used to study the crossover from networks
with local connections (as in 2D lattices) to global
(e.g., ER) networks. A priori, one might expect that there
exists a tricritical point between these two extremes, or that
one of them is unstable against even infinitesimal
perturbations.
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