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Motivated by the prospect of realizing a Fermi gas with a synthetic non-Abelian gauge field, we

investigate theoretically a strongly interacting Fermi gas in the presence of a Rashba spin-orbit coupling.

As the twofold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and

triplet components emerge, leading to an anisotropic superfluid. We calculate the relevant physical

quantities, such as the momentum distribution, the single-particle spectral function, and the spin structure

factor, that characterize the system.
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Owing to the unprecedented experimental controllabil-
ity, ultracold atoms have been proven to be an ideal tab-
letop system to study certain long-sought, challenging
many-body problems. Awell-known example is the cross-
over from a Bose-Einstein condensation (BEC) to a
Bardeen-Cooper-Schrieffer (BCS) superfluid in an ultra-
cold atomic Fermi gas [1]. Here we study a strongly
interacting Fermi gas in the presence of a synthetic non-
Abelian gauge field, as motivated by the recent demon-
stration of such field in bosonic 87Rb atoms [2] and the
prospect of its realization in fermionic 40K atoms [3]. We
focus on the Rashba spin-orbit (SO) interaction and ex-
plore its impact on the unitary Fermi gas.

It was shown in 2001 by Gor’kov and Rashba [4] that
superconducting 2D metals with weak SO coupling fea-
tures a mixed spin singlet-triplet pairing field, and its spin
magnetic susceptibility can be dramatically affected by the
SO interaction. By applying an additional large Zeeman
magnetic field, it was proposed by Zhang et al. [5] and Sato
et al. [6] that a topological phase with gapless edge states
and non-Abelian Majorana fermionic quasiparticles may
form. More recently, Vyasanakere and Shenoy identified
an interesting bound state by solving the two-body problem
[7], referred to as rashbons. By increasing the strength of
SO coupling, a BCS superfluid can therefore evolve into a
BEC of rashbons [8].

In this Letter, we investigate the properties of Rashba SO
coupled Fermi gases. We identify clearly the two-body
bound state from the Gaussian fluctuations of the pairing
field and show that they possess anisotropic effective mass.
This allows us to estimate the superfluid transition tem-
perature in the molecular limit. We calculate various physi-
cal quantities, such as the momentum distribution, the
single-particle spectral function, and the spin structure
factor, that are both experimentally relevant and of
fundamental importance in characterizing the system. In
addition, we show that the presence of the trap as in any
cold atom experiment would not affect the system in any

qualitative way. Therefore the salient features of SO
coupled fermions can indeed be observed in practice.
The model.—Let us start by formulating the

BEC-BCS crossover with a Rashba SO coupling H so ¼
�ðk̂y�̂x � k̂x�̂yÞ, whose Hamiltonian is given by

H ¼
Z

drfcþ½�k þH so�c þU0c
þ
" c

þ
# c #c "g; (1)

where �k ¼ @
2k̂2=ð2mÞ ��, and c ðrÞ ¼ ½c "ðrÞ; c #ðrÞ�T

denotes collectively the fermionic field operators. The
contact s-wave interaction (U0 < 0) occurs between
unlike spins. Here we give a brief description of the theo-
retical technique we used, the functional path integral
method [9]. A more detailed account will be presented
elsewhere [10]. We start from the partition function Z¼R
D½c ; �c �expf�S½c ðr;�Þ; �c ðr;�Þ�g, where S½c ; �c �¼R�
0 d�½

R
dr
P

�
�c �ðrÞ@�c �ðrÞ�þH ðc ; �c Þ, � ¼ 1=ðkBTÞ,

and H ðc ; �c Þ is obtained by replacing the field operators
cþ and c with the Grassmann variables �c and c , respec-
tively. The interaction term can be decoupled by using the
standard Hubbard-Stratonovich transformation with the
introduction of a pairing field �ðr; �Þ. After integrating

out the fermionic fields, we have Z¼R
D½�; ����

expf�Seff½�; ���g, where Seff ¼
R�
0 d�

R
drf�j�ðr;�Þj2

U0
g�

1
2 Trln½�G�1�þ�

P
k�k, with G being the single-particle

Green function. To proceed, we restrict ourselves to the
Gaussian fluctuation and expand �ðr; �Þ ¼ �0 þ ��ðr; �Þ.
The effective action is then decomposed accordingly
Seff ¼ S0 þ�S, where, in the momentum space, the
fluctuation action takes the form [k � ðk; i!mÞ and

q � ðq; i�nÞ]: �S ¼ P
q;i�n

½� 1
U0
��ðqÞ� ��ðqÞ� þ 1

2 �
ð12ÞTr�

P
k;q½G0ðkÞ�ðqÞG0ðk� qÞ�ð�qÞ�, with
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Two-body bound state.—Let us consider first the
normal state with �0 ¼ 0, in which case the Green
function reduces to its noninteracting form as
G0ðkÞ ¼ Diagfĝ0ðkÞ;�ĝ0ð�kÞg with ĝ0ðkÞ¼ ½i!m��k�
�ðky�̂x�kx�̂yÞ��1, leading to two helicity branches in the

single-particle spectrum, Ek;	 ¼ �k þ 	�k?, where k? �
ðk2x þ k2yÞ1=2 and 	 ¼ �1. The fluctuation action is given

by �S ¼ P
q½���1ðqÞ���ðqÞ� ��ðqÞ, where ��1ðqÞ is the

inverse vertex function which, at q ¼ 0, takes the form

��1ð!Þ¼ m

4
@2as
� 1

V

X
k

� X
	¼�

1=2�fðEk;	Þ
!þ i0þ�2Ek;	

þ 1

2�k

�
;

where fðxÞ ¼ 1=ðex=kBT þ 1Þ is the Fermi distribution
function and we have renormalized the bare interaction
U0 by the s-wave scattering length, 1=U0 ¼
m=ð4
@2asÞ � V�1

P
k1=ð2�kÞ, with V being the quanti-

zation volume.
The vertex function is simply the Green function of the

fermion pair. A bound state can therefore be examined
clearly by calculating the phase shift [11] �ðq; !Þ ¼
�Im ln½���1ðq; i�n ! !þ i0þÞ�. For a true boson, the
phase shift is given by �Bðq; !Þ ¼ 
�ð!� �Bq þ�BÞ,
where �Bq and �B are the bosonic dispersion and chemical

potential, respectively, and �ðxÞ is the step function. In
Fig. 1(a), we plot the two-body part of the phase shift at
q ¼ 0, obtained by discarding Fermi functions. The phase
shift jumps from 0 to
 at a critical frequency, signaling the
occurrence of a bound state. By recalling that the bosonic
chemical potential is given by �B ¼ 2�� EB, where EB

is the bound state energy, the critical frequency ð!þ 2�Þc

at q ¼ 0 gives exactly EB. Using the fact that the critical
frequency corresponds to the position where Re½��1�
changes sign, we have

m

4
@2as
� 1

2V

X
k;	¼�

�
1

EB � 2Ek;	

þ 1

�k

�
¼ 0: (3)

The inset in Fig. 1(b) shows the bound state energy as a
function of the SO coupling strength. At the unitarity limit,
the bound state energy is universally given by EB �
�1:439 229m�2=@2. The size of the bound state a is there-
fore at the order of @2=ðm�Þ. The bound states are only well
defined once a � k�1

F or �kF � �F. Thus, we anticipate
that the system will cross over to a gas of rashbons at
�kF=�F 	 1.
In the limit of a large SO coupling, the well-defined two-

body bound state should have a bosonic dispersion �Bq ¼
@
2q2?=ð2M?Þ þ @

2q2z=ð2MzÞ and weakly interact with each
other repulsively. Because of the anisotropic fermionic
dispersion Ek;� ¼ �k � �k?, the effective mass of rash-

bons becomes anisotropic. While Mz ¼ 2m is not affected
by the Rashba coupling, M? may get strongly renormal-
ized. As the jump of the phase shift at nonzero q which
occurs at EB þ �Bq , we can numerically determine M?.
Figure 1(b) displays � ¼ M?=ð2mÞ. At unitarity, we find
� ’ 1:2. When the system becomes an ensemble of weakly
interacting rashbons, the heavy massM? causes a decrease

in the condensation temperature so that TBEC ¼
��2=3TBEC;0, where TBEC;0 ’ 0:218TF is the BEC tempera-

ture without the SO coupling.
Condensation of rashbons.—Let us now turn to the

condensed phase characterized by a nonzero order parame-
ter �0 � 0. At the mean-field saddle-point level, the
single-particle Green function takes the form

G�1
0 ¼ i!m � �k �H so i�0�̂y

�i�0�̂y i!m þ �k �H 

so

2
4

3
5: (4)

The inversion of the above matrix can be worked out
explicitly, leading to two single-particle Bogoliubov dis-
persions whose degeneracy is lifted by the SO interaction,

Ek;� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � �k?Þ2 þ�2

0

q
, and the normal and anoma-

lous Green functions from which we can immediately
obtain the momentum distribution nðkÞ ¼ 1�P

	½1=2�
fðEk;	Þ��k;	 and the single-particle spectral func-

tion A"ðk;!Þ¼A#ðk;!Þ¼P
	½ð1þ�k;	Þ�ð!�Ek;	Þþ

ð1��k;	Þ�ð!þEk;	Þ�=4, where �k;� ¼ ð�k � �k?Þ=
Ek;�. The chemical potential and the order parameter are

to be determined by the number and the gap equations, n ¼P
knðkÞ and �0 ¼ �U0�0

P
	½1=2� fðEk;	Þ�=ð2Ek;	Þ,

respectively. Figure 2(a) displays the chemical potential
� and order parameter as functions of the SO coupling
strength for a unitary Fermi gas. The increase of the SO
strength leads to a deeper bound state. As a consequence,

FIG. 1 (color online). (a) Rashbons as evidenced by the two-
body phase shift of ��1ð0; !Þ at three different scattering
lengths. The arrows indicate the position of binding energy.
(b) Effective mass of rashbons [� ¼ M?=ð2mÞ] in the strong
SO limit. The inset shows the bound state energy as a function of
the scattering length.
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in analogy with the BEC-BCS crossover, the order
parameter and critical transition temperature are greatly
enhanced at �kF 	 �F. In the large SO coupling limit, we
have � ¼ ð�B þ EBÞ=2, where �B is positive due to the
repulsion between rashbons and decreases with increasing
coupling as shown in the inset of Fig. 2(a). By assuming an
s-wave repulsion with scattering length aB, where �B ’
ðn=2Þ4
@2aB=M, we estimate within mean-field that in the
unitarity limit, aB ’ 3@2=ðm�Þ, comparable to the size of
rashbons.

Figures 2(b) and 2(c) illustrate the momentum distribu-
tion and the single-particle spectral function, respectively.
These quantities exhibit anisotropic distribution in mo-
mentum space due to the SO coupling and can be readily
measured in experiment.

Another important consequence of the SO coupling
is that the pairing field contains both a singlet and
a triplet component [4,8]. For the system under study, it is
straightforward to show that the triplet and singlet pairing
fields are given by hc k"c�k"i ¼ �i�0e

�i’k
P

		½1=2�
fðEk;	Þ�=ð2Ek;	Þ and hc k"c�k#i¼�0

P
	½1=2�fðEk;	Þ�=

ð2Ek;	Þ, respectively, where e�i’k � ðkx � ikyÞ=k?.
The magnitude of the pairing fields is shown in Figs. 3(a)
and 3(b). Theweight of the triplet component increases and
approaches that of the singlet component as the SO cou-
pling strength increases. In Figs. 3(c) and 3(d), we plot the
zero-momentum dynamic and static spin structure factor
[12], respectively. In the absence of the SO coupling, both
these quantities vanish identically. Hence a nonzero spin
structure factor is a direct consequence of triplet pairing [4].
Note that spin structure factor can be measured using the
Bragg spectroscopy method as demonstrated in recent
experiments [13].

Probing the anisotropic superfluid.—One leading candi-
date to observe superfluid rashbons is a trapped Fermi gas
of 40K atoms near a broad Feshbach resonance, where an
applicable scheme to generate the Rashba SO coupling
was recently proposed [3]. Previous experiments have

demonstrated the measurement of momentum distribution
and single-particle spectral function in 40K without the SO
coupling [14]. We perform the mean-field calculation in a
3D spherical harmonic trap VTðrÞ ¼ m!2

0r
2=2, by using

the local density approximation (LDA) [15]. In LDA, the
gas is divided into small cells with a local chemical poten-
tial �ðrÞ ¼ �0 � VTðrÞ, where �0 can be determined by
the number equation

R
drnðrÞ ¼ N, where N is the total

number of fermions. The local density nðrÞ, momentum
distribution nðk; rÞ=ð2
Þ3, occupied spectral function
Aðk; !; rÞfð!Þk2=ð2
2Þ are then integrated over the
whole space to obtain the total contribution. We show, in
Figs. 4(a) and 4(b), the density profiles of a trapped unitary
Fermi gas at different SO coupling strengths and tempera-
tures. As anticipated, with the increase of the SO coupling

FIG. 3 (color online). Linear contour plot for the triple pairing
correlation jhc k"c�k"ij between like spins (a) and the singlet

pairing correlation jhc k"c�k#ij between unlike spins (b) for a

homogeneous unitary Fermi gas at zero temperature with
�kF=�F ¼ 2. The zero-momentum dynamic and static spin
structure factor are shown in (c) and (d), respectively.

c)((a) (b)

μ
E /2B

FIG. 2 (color online). (a) Mean-field order parameter as a function of the SO coupling for a homogeneous unitary Fermi gas at zero
temperature. The inset shows the chemical potential and the half of bound state energy, both in units of �F. (b) Momentum distribution
and (c) single-particle spectral function for 
 ¼ 
=2 at �kF=�F ¼ 2. Here 
 is the angle between k and the z axis. The width of the
curves in (c) represents the weight factor ð1� �k;�Þ=4 for each of the four Bogoliubov excitations.
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the cloud shrinks. As shown in Figs. 4(c)–4(e), the
anisotropic momentum distribution at large SO coupling,
which can be measured using the time-of-flight technique,
is not washed out by the trap. This anisotropy originates
from the SO coupling, which also manifests itself in a
noninteracting system [see Fig. 4(c)]. However, by com-
paring Fig. 4(c) with (d) and (e), one can clearly see the
effects of the interaction which greatly widens the momen-
tum distribution.

Figure 5 presents the occupied spectral function at
T ¼ 0:8Tc;0, where Tc;0 is the critical temperature without

the SO interaction. The distinct behavior for the spectral
function at 
 ¼ 0 (along the z axis) and 
=2 (in the
transverse plane) can be probed by the recently demon-
strated momentum-resolved rf spectroscopy [14]. To make
better comparison with the experiment, we have included
in the calculation an energy resolution of 0:2EF, as pre-
sented in the JILA rf measurement. Both Figs. 4 and 5
therefore clearly demonstrate that the anisotropic nature of
the rashbon superfluid will not be smeared out by averag-
ing over the trapped cloud.

Summary.—We have shown that Fermi superfluid sub-
ject to a strong Rashba spin-orbit coupling differ signifi-
cantly from the conventional BEC-BCS crossover system
studied intensively over the past few years. Rashbons—the
two-body bound states induced by the SO coupling—have

anisotropic effective mass and condense into a mixed spin
pairing state. They lead to a strong anisotropy in the
momentum distribution and the single-particle spectral
function as well as a higher critical temperature. We have
proposed that these distinct behaviors can be readily
probed in a trapped strongly interacting Fermi gas of 40K
atoms in a synthetic non-Abelian gauge field.
More interesting properties of the system may be dis-

covered thanks to the unprecedented controllability in
ultracold atoms. SO coupled Fermi gas in 2D may be
utilized to create Majorana fermions [5,16]. Topological
phase transitions may be induced by an additional Zeeman
field [16]. Therefore, the exploration of strong correlation
effects of SO coupled Fermi gases represents a new excit-
ing avenue of research in many-body problem. In the
current work, we have adopted a mean-field approach.
The mean-field calculation in the condensed phase can
be improved by incorporating Gaussian pair fluctuations
[17] in the future.
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Note added.—Recently, we noticed the work by Yu and

Zhai [18], which treats a similar system. Our results agree
with each other where they overlap. See following Letter.
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