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Anomalous Hall Conductivity from the Dipole Mode of Spin-Orbit-Coupled Cold-Atom Systems
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Motivated by recent experiments by Lin et al., [Nature (London) 471, 83 (2011)] that engineered spin-
orbit coupling in ultracold mixtures of bosonic atoms, we study the dipole oscillation of trapped spin-
orbit-coupled noncondensed Bose and Fermi gases. We find that different directions of oscillation are
coupled by the spin-orbit interactions. The phase difference between oscillatory motion in orthogonal
directions and the trapping frequencies of the modes are shown to be related to the anomalous Hall
conductivity. Our results can be used to experimentally determine the anomalous Hall conductivity for

cold-atom systems.
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Introduction.—Transport phenomena play a crucial role
in understanding and characterizing condensed-matter sys-
tems. Two of these phenomena, the Hall effect and the
anomalous Hall effect (AHE) were both discovered in the
late 19th century. That the Hall effect is due to the Lorentz
force has been understood since those days. The AHE, a
transverse voltage or current present in ferromagnets in the
absence of a magnetic field, is related to spin-orbit (SO)
coupling and has proven much more challenging to under-
stand (for a review see Ref. [1]). Since SO coupling is
responsible for the AHE, anomalous-Hall-like effects
should also be present for particles that do not carry charge,
and, indeed, such effects are observed for magnons [2],
phonons [3,4], and photons [5]. Although these effects
were observed using heat currents, and they should thus
be called anomalous Righi-Leduc effects, their physical
mechanism is similar to that of the AHE.

In this Letter, we consider the AHE in homogeneous and
harmonically-trapped cold-atom systems. (The AHE was
considered in cold-atom systems in the presence of an
optical lattice in two dimensions by Dudarev et al. [6].)
As the atoms are neutral, the AHE here refers to a mass
current perpendicular to an applied force in the absence of
a Coriolis force. (For cold-atom systems under rotation, the
resulting Coriolis force mimics the Lorentz force.) Our
investigation is motivated by the recent experiment by
Lin et al. [7], where spin-orbit coupling in a Bose-
Einstein condensate [8,9] was engineered via laser fields.
This experiment is one of the latest achievements in study-
ing phenomena known from solid-state physics in a cold-
atom setting. Other examples are the Mott-insulator-to-
superfluid phase transition [10], Bardeen-Cooper-
Schrieffer superfluidity [11], the Berezinskii-Kosterlitz-
Thouless phase transition [12,13], and Anderson localiza-
tion [14]. An important feature of cold-atom systems is that
new physical regimes (as compared to solid-state systems)
can be explored. Furthermore, cold-atom systems are, in
principle, disorder free and have a well-understood micro-
scopic description making it worthwhile to undertake a
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detailed comparison between theory and experiment,
whereas in solid-state materials typically a multitude of
effects play a role which makes modeling harder.

In the case of the AHE, for example, the difficulty in
understanding the effect lies in part in the interplay be-
tween so-called intrinsic and extrinsic contributions.
Intrinsic contributions come from spin-orbit coupling ef-
fects in the band structure, whereas extrinsic contributions
arise from disorder. A recent theoretical advancement in
the understanding of the AHE is the semiclassical theory
that yields equations of motion for Bloch wave packets
[15,16]. In this description, the intrinsic contribution to the
AHE stems from anomalous-velocity contributions to
these semiclassical equations of motion [17]. In modern
language, this anomalous velocity results from the Berry-
phase curvature of the Bloch bands that in turn is deter-
mined by the topology of the band structure. The relation
between band structure topology and the Hall conductivity
was first emphasized by Thouless et al. [18], and has
regained interest with the very recent discovery of topo-
logical insulators [19].

In a typical cold-atom experiment, steady-state currents
are not readily created and transport coefficients can be
measured only indirectly. In this Letter, we show that the
anomalous Hall conductivity can be obtained from the
properties of the dipole oscillation of a cloud of spin-orbit
coupled cold atoms that is trapped in an external harmonic
trapping potential. The dipole mode is a collective oscil-
lation of the center-of-mass of the cloud. According to
Kohn’s theorem [20], the frequencies of the dipole oscil-
lation are equal to the trap frequencies. The SO coupling,
however, breaks the harmonic nature of the system and as a
result Kohn’s theorem for the dipole modes does not hold.
We find that spin-orbit coupling modifies the oscillation
frequencies and that different directions of oscillation are
coupled by the spin-orbit interactions. The phase differ-
ence between oscillatory motion in different directions
and the mode frequencies turn out to be related to the
anomalous Hall conductivity. This result can be used to
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FIG. 1 (color online). The anomalous Hall conductivity for
bosons (solid) and fermions (dashed) as a function of nA3. The
lines correspond from top to bottom to a/8 = {0, 2, 1.5} where
a® + B2 = mA/h%. The spin-splitting energy A = 0.2kgT.

experimentally determine the anomalous Hall conductivity
for cold-atom systems. Below we detail the semiclassical
Boltzmann approach on which our findings are based,
determine the anomalous Hall conductivity for homoge-
neous noncondensed Bose and Fermi gases, and show how
this conductivity can be obtained from the dipole oscilla-
tion of trapped atomic gases.

Semiclassical equations of motion.—We consider atoms
with effective spin-1/2 and mass m trapped in an external
potential V**(x) in the presence of a generic spin-orbit
coupling. The Hamiltonian is

ﬁz

=
2m

+VER) - M(p) - 7, (1)
with p and ¥, the momentum and position operators of the
particles, and 7 the vector of Pauli matrices. The last term
describes the SO coupling, which for spin one-half parti-
cles is without loss of generality given in terms of a
momentum-dependent effective magnetic field M.

At the semiclassical level, we consider in the first in-
stance the dynamics of the expectation values of the posi-
tion x = (X), momentum p = (p), and spin s = A(7)/2
degrees of freedom. We obtain the Heisenberg equations
of motion
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We proceed by assuming that the spin degree of freedom is
much faster than the motion of the particles. Thus, we let
the spin follow the effective magnetic field M adiabati-
cally, and only allow for a small misalignment, between the

spin and the effective magnetization, that is first order in
time derivatives of the orbital dynamics. This approach is
essentially exact in the linear-response regime. Hence,
we solve the equation for the spin degree of freedom,

Eq. (4), up to first order in time derivatives by s « Y ,m +
ﬁ(m X 37'”) - p;, with m(p(r)) the unit vector in the
direction of M. For spins opposite to the field the result
is —s. Insertion of the result for s into Eq. (2) gives [15,16]

aﬁpyk

Xy = + kp X B(p), ®)
where the band index k distinguishes between atoms with
spin parallel ( + ) or antiparallel ( —) to the field M.
Furthermore, the dispersion is given by €,; =
p>/2m — k|M(p)|, and the vector field B.(p)=
WY . petnya€(0m/dp, X 9m/dp,) - m/2  determines
the anomalous-velocity contribution. We refer to B as the
Berry magnetic field.

Boltzmann equation and anomalous Hall conductivity.—
We proceed by calculating the anomalous Hall conductiv-
ity for a homogeneous gas from the Boltzmann equation
for the distribution function f(x, p, r) for atoms in band &,
which is given by

C0fk Sk

Lf"wk —+p-—=0, (6)

at ox ap
where we ignored collisions as the intrinsic anomalous
Hall conductivity does not depend on relaxation [1]. In
the above, X, and p are given by Egs. (3) and (5), respec-
tively. We consider a steady-state situation with a constant
applied force F = —9V* /dx acting equally on atoms in
both bands, and define the conductivity tensor o by j =

o - F, where j is the particle current density given by j =

il (Zi—;’l’)g f«(p)x;. The anomalous Hall conductivity oy

is the off-diagonal component of this conductivity tensor.
The solution of the Boltzmann equation leads to the con-
ductivity

d’p
= kN B.(p), 7
O AH ke%}[(z'ﬂ'hy (ep,k) z(p) ( )

where N(e) = [els~#/kT + 117! (with kgT the thermal
energy and u the chemical potential), is the Fermi-Dirac
( + ) or Bose-Einstein ( — ) distribution function that ap-
plies for fermions or bosons, respectively. The above ex-
pression for the anomalous Hall conductivity is the
intrinsic contribution due to SO coupling effects in the
band structure. In cold-atom atom systems there is, unless
engineered [14], no disorder and thus extrinsic contribu-
tions are absent.

So far we have considered a generic SO coupling. In
order to make a connection with experiments we will
now consider a Rashba-Dresselhaus [21] form of the SO
coupling so that the effective magnetic field reads
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where « and B are the coupling constants for Rashha and
Dresselhaus SO coupling, respectively, and A is a spin-
splitting energy. We then find for the Berry magnetic field

4(a® — AR
[A% + 4(a + B2)p? — 16afp.p,T"

B(p) = 2.9

Note that in the experiments by Lin et al. [7] an equal
amount of Rashba and Dresselhaus coupling was realized,
i.e., a = = B. It follows that in this specific case B(p) = 0
and that o,y = 0 [22]. It is, however, experimentally
straightforward to create a more general SO coupling using
additional lasers [7,23]. The anomalous Hall conductivity
vanishes in the absence of a spin-splitting A, in agreement
with the fact that the AHE occurs in ferromagnets.

In Fig. 1 we show results for the anomalous Hall
conductivity of bosons and fermions. We only show the
results for @ > B since oay(Fa, =B) = oaula, B) and
oag(a, B) = —oan(B, a). The results shown for bosons
are above the critical temperature for Bose-Einstein con-
densation (this temperature depends on «, 3, and A). Here,
n is the density and A = (27h?/mkgT)' /2 the de Broglie
wavelength.

Collective modes.—We now study the dipole oscillation
of an atomic cloud of N, atoms in an anisotropic
harmonic trapping potential of the form V®(x) =
2[w}(x* + y?) + w2z?], with o, and w_, the trapping fre-
quencies. The dipole (I = 1) oscillations are pure trans-
lations of the cloud with no changes in its internal
structure that are described by the equations of motion
for the center-of-mass position x, = N%Zk [dx [[dp/

@7n)*1fix, and vy = N%Zk [dx [ldp/
(27h)3]fx;. Hence, we make the following ansatz for
the distibution function: fi(x, p, 1) = niy(x — xo(2), p —
mwy(t)), where ni(x, p) = N(e,; — m(x)) is the Bose-
Einstein or Fermi-Dirac distribution function in the local-
density approximation, with wu(x) = w — V*(x). From the
Boltzmann equation we obtain the equations of motion for
the center-of-mass coordinates. For displacements that are
small compared to the size of the clouds, x,/width < 1, it
is sufficient to linearize these equations of motion [24]
resulting in

velocity

X‘O = ['_I TVy — VVeX(xO) X B, (10)

miy = —VV(xy), (11)

where H is proportional to the Hessian matrix of the disper-
sion and B is the Berry magnetic field averaged over the
trap. These are given by
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with H;;, = md*e,;/dp;dp;. The linearized equations
(10) and (11) have solutions with harmonic time dependence
corresponding to collective modes of the atomic cloud. For
the mode in the z direction we obtain the result w = w, as
predicted by Kohn’s theorem and expected since the SO
coupling only affects the dynamics in the x-y plane. The
modes in this plane have frequencies given by

w. = a),\/A = (B — H A, + A, (12)

with A = (H,, + H,, + B2m*w?)/2. When there is no SO
coupling, a, B8 = 0, we find w = w, as predicted by Kohn’s
theorem. This mode is doubly degenerate due to the two
equivalent orthogonal directions of oscillation in the x-y
plane. For nonzero SO coupling the degeneracy of these
modes is lifted since the SO coupling breaks the
rotational invariance in the plane, resulting in two different
frequencies. The eigenmodes of oscillation are given by
xy (1) = (x; sin(w«t + @), xpsin(w+1))” with sing. =
mB,w. [(H%, + m*B2w%)"/2. In Fig. 2 we show the
mode frequency w, and angle ¢, as a function of «; in
the special case @ = =8 we have B, = 0 and find ¢.. = 0.
Another special case occurs when the SO coupling is of the
pure Rashba or Dresselhaus form. Then A xy Vanishes, which
results in ¢ = 77/2. The phase difference between the two
different directions of oscillations is determined by the
Berry magnetic field. We can relate the average of the
Berry magnetic field over the trap to the anomalous Hall
conductivity for a homogeneous gas with a density equal to
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FIG. 2 (color online). Dipole mode frequency w as given by
Eq. (12). The solid line is calculated for 8 = 0, the dashed lines
correspond to 8 = 0.5m/h*>A. The spin splitting is A = 0.2kgT.
The number of particles N, = 1.8 X 10° and temperature T =
200 nK. The inset shows the sing as a function of «.
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the central density n, of the trapped cloud B, =
oan(ng)/ng, where oap(ng) is given by Eq. (7). This
approximation is valid whenever the local-density approxi-
mation holds, i.e., when the de Broglie wavelengths of the
particles are small compared to the size of the atomic cloud.
This is typically the case in these experiments. This con-
ductivity can therefore be experimentally determined by
measuring the frequencies w - or the phase differences ¢
of the modes.

Discussion and conclusions.—We have studied the di-
pole oscillation of a trapped gas of spin-orbit coupled cold
atoms, and found that these oscillations can be used as an
experimental probe for the anomalous Hall effect. In the
experiments by Lin et al.[7] the SO coupling strength is
a, B=mA/h* and the Zeeman spin splitting is A =
0.2kgT, using a temperature of 7 = 200 nK. Taking values
for o and B of this order, we find that the angle ¢, = 0.03
and that (w+~ — w,)/w, = 10% which appear to be observ-
able. We also note that exciting the dipole mode by a
sudden displacement of the trap will generally excite
both modes, leading to a beating pattern with frequency
(wy — w_)/2, which may also be observed.

Up to this point we have not considered collisions
between the atoms leading to a damping of collective
oscillations. The harmonic nature of our system is explic-
itly broken by the SO coupling leading to a relaxation of
the center-of-mass motion of the cloud (such relaxation is
absent when the SO coupling is zero and Kohn’s theorem
prevails). This can be described phenomenologically by
adding a term —w,/7 on the right-hand side of Eq. (11),
which would lead to a damping of the dipole modes but
does not affect the anomalous Hall conductivity. The fre-
quencies of the damped system are ) = w. — iy~ with
the damping rate ., up to first order in 1/7, given by

Y+ =

1( 0t + H, 0’
.

= = - 1)
2% +2H, 0? + B%mzw‘,1 )

We note that the relaxation time 7 can, in principle, be
calculated from the Boltzmann equation but considering
this is, given the above remarks regarding its importance,
beyond the scope of the present Letter.

In the adiabatic approximation that leads to the semi-
classical equations of motion, spin directions transverse to
the magnetic field M(p) are taken into account approxi-
mately and give rise to the anomalous-velocity terms.
One could go beyond this adiabatic approximation and
consider the (2 X 2)-distribution function f,/(p) that al-
lows for all possible spin directions. We have checked, by
solving the Boltzmann equation for this distribution func-
tion in the collisionless limit, that our results for the
anomalous Hall conductivity and the phases ¢. are not
altered.

Possible extensions of this work might consider the
Bose-Einstein partially condensed phase for bosons, and
the situation without Zeeman spin splitting A. In the latter

case the AHE is absent, but there will be a spin Hall
effect [25,26] that can be probed via the spin-dipole
mode. (The spin Hall effect for cold atoms was proposed
by Zhu et al. [27] for a cloud falling due to gravitation.) We
also intend to investigate the effects of spin-orbit coupling
on other collective modes, in particular, the quadrupole
oscillation.
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