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It is shown that a vorticity, constructed from the spin field of a quantum spinning plasma, combines with

the classical generalized vorticity (representing the magnetic and the velocity fields) to yield a new grand

generalized vorticity that obeys the standard vortex dynamics. Expressions for the quantum or spin

vorticity and for the resulting generalized helicity invariant are derived. Reduction of the rather complex

spinning quantum system to a well known and highly investigated classical form opens familiar channels

for the delineation of physics peculiar to dense plasmas spanning solid state to astrophysical objects. A

simple example is worked out to show that the magnetics of a spinning plasma can be much richer than

that of the corresponding classical system.
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In this Letter we demonstrate that a spinning quantum
fluid plasma [1,2] retains the most interesting and defining
features of a classical ideal fluid. We will show, in particu-
lar, that it is possible to engineer a ‘‘grand generalized
vorticity’’ (GGV) that obeys a vortex dynamic structure.
Such a GGV is created by combining the erstwhile ‘‘gen-
eralized’’ classical vorticity �c ¼ r� Pc, where Pc ¼
Aþ ðmc=qÞv is proportional to the canonical momentum
[3,4], and a ‘‘quantum vorticity’’ �q constructed from the

macroscopic spin vector field S.
It is remarkable that we can rewrite a complex and

physically rich system such as a quantum spinning plasma
as a standard vortex dynamics. At the very least it implies a
new composite constant of motion (the grand generalized
helicity) and the existence of an Alfvén-Kelvin theorem.
This formulation, however, has the potential for a far
speedier extraction and exposition of a great many prop-
erties of spinning plasmas. The most important step in this
new formulation is the construction or identification of the
quantum vorticity vector �q. As we will see, the form for

�q is, by no means, obvious. Before embarking on the

technical formulation, it is pertinent to put the current work
in a historical perspective.

The ‘‘project’’ of the fluidization of quantum systems
(Schrödinger, Pauli, and Dirac equations) has been driven
by two related but distinct objectives.

(1) Earlier investigators [5–8], wishing to understand
and interpret quantum mechanics in terms of familiar
classical concepts, were content to devise appropriate flu-
idlike variables obeying the ‘‘expected’’ fluidlike equations
of motion:, for example, the continuity and the force
balance equation. Quantum mechanics entered the latter
through the so called ‘‘quantum forces’’ proportional to
powers of @. The fluidized system, of course, was equiva-
lent to the original quantum one.

(2) After an extended hiatus following the initial studies
in quantum plasmas [9–13], the impetus for the recent
impressive comeback of the fluidization project, however,

has come from a totally new direction—from attempts to
investigate the collective macroscopic motions accessible
to a fluid (plasma) whose elementary constituents follow
the laws of quantum rather than classical dynamics. The
new chapter may be labeled, more appropriately, as a
macroscopic theory of quantum plasmas as opposed to
the earlier efforts that mostly consisted of casting quantum
mechanics into a fluidlike mold. Much progress has been
made in first constructing the desired macroscopic frame-
works, and then working out and exposing new phe-
nomena, originating in the quantum nature of the
constituent particles. The macroscopic formulations (for
studying collective motions of quantum fluids) have in-
voked methodologies similar to those employed in classi-
cal plasmas; both the fluid and kinetic theories of simple
quantum [14–18], spin quantum [1,2,19–24], and relativ-
istic quantum plasmas [25–29] have been constructed.
The current work on the vortex dynamic formulation of

spinning non relativistic quantum plasma, though highly
influenced by Takabayasi’s excellent papers spanning the
1950s to 1980s [7,8], is of the latter genre for which the
recent trend setting work of Marklund and Brodin [1,2]
provides a basic reference. The focus of this Letter is on the
elucidation of the basic concept of quantum vorticity. We
will, therefore, work with the simplest model (the equiva-
lent of an ideal classical fluid) obtained from Refs. [1,2] by
neglecting complicated effects like the spin-spin and the
thermal-spin couplings.
The spin quantum plasma is described by three coupled

equations for the density n, the fluid velocity v and the spin
vector S. The first two are the continuity

@n

@t
þr � ðnvÞ ¼ 0; (1)

and the momentum equation

m

�
@

@t
þ v � r

�
v ¼ q

�
Eþ v

c
� B

�
þ�SjrB̂j þ�; (2)
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with

B̂ ¼ Bþ @c

2qn
@iðn@iSÞ; (3)

where q (m) is the particle charge (mass), E and B are the
electric and magnetic field, respectively, � ¼ q@=2mc is
the elementary magnetic moment, @ is the reduced Planck
constant, c is the speed of light, Sj is the j component for

the normalized unit-modulous spin vector S (S � S ¼ 1),

and B̂j is the j component of B̂. Notice that the spin vector

used in Refs. [1,2] is @S=2.
The last term in the momentum equation is the force

produced by the total fluid pressure

� ¼ � 1

n
rpþ @

2

2m
r
�r2

ffiffiffi
n

p
ffiffiffi
n

p
�
þ @

2

8m
rð@jSi@jSiÞ; (4)

consisting of the classical pressure p, the Bohm potential
(the second term), and the effective spin pressure.

The third equation is the evolution of spin vector�
@

@t
þ v � r

�
S ¼ 2�

@
ðS� B̂Þ; (5)

that is similar to the classical precession equation for the
spin with the spin correction to the magnetic field. The set
of Eqs. (1), (2), and (5) is completely equivalent to those
found in the primary Refs. [1,2].

Let us now convert the system into evolution equations
for the appropriately defined vorticities. Using E ¼
�r�� @tA=c, B ¼ r�A (� and A are the scalar and
vector potentials), and the vector identity ðv � rÞv ¼
rv2=2� v� ðr� vÞ, Eq. (2) becomes

@Pc

@t
¼ v��c þ @

2m
SjrB̂j þ c

q
�̂; (6)

where �̂ ¼ ��rðq�þmv2=2Þ, and Pc is proportional
to the classical canonical momentum

P c ¼ Aþmc

q
v: (7)

The ensuing classical generalized vorticity (vorticity will
have the dimensions of the magnetic field throughout this
Letter)

� c ¼ r� Pc ¼ Bþmc

q
r� v; (8)

will, then, obey

@�c

@t
¼ r� ðv��cÞ þ @

2m
rSj �rB̂j; (9)

obtained, by taking the curl of Eq. (6) and having assumed
a barotropic fluid. We notice that the spin dependent
forces destroy the canonical vortical structure for �c

[3,4]. Consequently, the classical generalized helicity
[hi ¼ R

d3x]

hc ¼ h�c � Pci; (10)

is no longer conserved. We remind the reader that the
(generalized) helicity conservation is one of the most
important properties of ideal fluids and is the primary
dynamical constraint that allows the formation of a host
of nontrivial self-organizing equilibrium configurations in
magnetohydrodynamics, and also in more general plasma
descriptions. The loss of a helicity invariant could make it
much harder to understand the fundamental motions of a
spinning quantum fluid.
One could take the alternative view that spin forces act

as a quantum source (proportional to @) that may create or
destroy helicity via

dhc
dt

¼ @

m
h�c

iSj@iB̂ji; (11)

and, in the process, cause transitions to a different helicity
state. Observe that only the spin force, being nonpotential,
survives in the vortical equation. The potential quantum
forces like the Bohm potential do not contribute to the
vorticity evolution.
Experience, however, indicates that, though, addition of

new physics (to fluid mechanics) does destroy old invari-
ants, new and more encompassing invariants often emerge
[30,31]. Spinning quantum plasmas prove to be no excep-
tion. Guided by Takabayasi’s work [8], we were able to
uncover, what could be called, the spin or quantum vor-
ticity:

�q ¼ S1ðrS2 �rS3Þ þ S2ðrS3 �rS1Þ þ S3ðrS1 �rS2Þ
¼ ðrS1 �rS2Þ=S3; (12)

where the components of S are labeled by 1, 2, 3. Equality
of the two expressions, displayed in Eq. (12), follows from
the constraint S21 þ S22 þ S23 ¼ 1 implying S1rS1 þ
S2rS2 þ S3rS3 ¼ 0. For completeness, the quantum vor-
ticity could be also written in the component form as
�q

i ¼ ð1=2Þ"ijk"lmnSl@jSm@kSn.

The quantum vorticity associated with the spin field has
many interesting features. First, it requires that all Si and
rSi to be nonzero; the system must have variation in at
least two dimensions for a nontrivial�q. Second, although

symmetric in the three spin components, its form could not
be easily guessed; it departs so fundamentally from the
form taken by the vorticity r� v (or r�A) associated
with the standard classical vector fields v (or A). In spite
of these peculiarities, it does conform to our notions of a
vorticity; i.e, it is the curl of a vector field: �q ¼ r� Pq,

with Pq ¼ �S3r½arctanðS2=S1Þ�. The vector field is in the

Clebsch form.
Manipulations of the spin dynamical equation (5) yields

the evolution equation

@�q

@t
¼ r� ðv��qÞ þ q

mc
rSj �rB̂j; (13)
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and its uncurled companion for the potential Pq [8]

@Pq

@t
¼ v��q þ q

mc
SjrB̂j: (14)

Notice that �q obeys exactly the same equation (9) as is

obeyed by �c. This is, of course, no accident; it was the
entire raison d’etre for constructing �q. The journey from

(5) to (13) is both unusual and profound.
By adding and subtracting Eqs. (9) and (13), we derive

the two GGVs, �þ and ��

�� ¼ �c � @c

2q
�q; (15)

explicitly showing that quantum modification to the clas-
sical vortex field is of order @=2. The new vorticities
follow:

@�þ
@t

¼ r� ðv��þÞ þ @

m
rSj �rB̂j; (16)

@��
@t

¼ r� ðv���Þ; (17)

while the associated potential vector fields P� ¼
Pc � ð@c=2qÞPq satisfy

@Pþ
@t

¼ v��þ þ @

m
SjrB̂j þ c

q
�̂; (18)

@P�
@t

¼ v��� þ c

q
�̂: (19)

Equation (17) is clearly what we were seeking, the grand
generalized vorticity �� obeying the canonical vortex
dynamics. Thus the structure of the dynamics of a spinning
quantum plasma, in part, has been reduced to that of a
highly investigated and understood classical system. The
conserved helicity h� ¼ hP� ���i,

dh�
dt

¼ 0 (20)

will serve as a ‘‘label’’ to characterize dynamical states of a
spinning quantum plasma.

It turns out, however, that the highly complex spinning
quantum plasma demands a two vorticity theory with only
one of them as a basic invariant. The second generalized
quantum helicity hþ ¼ hPþ ��þi is not conserved, and its
rate of change is given by

dhþ
dt

¼ 2@

m
h�iþSj@iB̂ji: (21)

In the wake of Eqs. (9) and (13), the rate of change of either
hc or hq is proportional to dhþ=dt.

To the vorticity equations, we add Maxwell’s equations

r� B ¼ 4�

c
Jþ 4�r�Mþ 1

c

@E

@t
; (22)

to complete the dynamical system consisting of the mag-
netic, velocity and spin fields. It contains the normal cur-
rent density J, and M ¼ �nS is the magnetization that
defines the spin current density r�M [2].
The main intent of this Letter was to create the concep-

tual foundation for the vortex dynamic formulation of a
spinning quantum plasma. The next obvious step will be to
explore the class of equilibrium structures pertinent to a
spinning plasma by invoking the constrained (conserving
��) minimization of an appropriate energy functional [4].
Wewill defer this investigation to a later detailed paper and
solve here a simple equilibrium problem that may be
viewed as a generalization of the London equation, first
proposed, to explain the Meissner-Ochsefeld effect ob-
served in type-I superconductors. Electrodynamically, the
London equation is nothing but the absence of generalized
vorticity [32]

� c ¼ Bþmc

q
r� v ¼ 0: (23)

Combined with the displacement current-free maxwell
equation it yields the strongly diamagnetic behavior where
the magnetic field (�2

sr2B ¼ B) is limited to a skin depth

�s ¼ c=!p (where !p ¼ ð4�q2n=mÞ1=2 is the plasma fre-

quency) near the edge of a region of length L (� �s).
The generalization of the London equation for the spin

quantum system, �� ¼ 0, will span new equilibrium
structures. This class of such equilibria, defined by the
vorticity equations (16) and (17) and Maxwell equations
(22), for an incompressible fluid (r � v ¼ 0) with constant
number density, may be converted to the dimensionless set:

r� ð�q � vÞ ¼ rSj �rðbj þ ar2SjÞ; (24)

b þr� v ¼ a�q; (25)

r� b ¼ vþ ar� S; (26)

with the following normalizations: all lengths to ��1
s ,

magnetic field to a fiducial field B, and velocity to the
Alfven speed vA ¼ c!c=!p, where !c ¼ qB=mc is the

cyclotron frequency associated with the magnetic field.
Remarkably enough, the entire system has a

single characteristic parameter a ¼ �c!p=ð2vAÞ ¼
ð�2

c=�
2
sÞðmc2=@!cÞ that determines the relative strength

of the newly found quantum vorticity to the canonical
vorticity. It may be viewed as the ratio between the
Compton length �c ¼ @=mc and the classical length
vA=!p. It could also be viewed as the square of the ratio

�c=�s enhanced by the ratio between the particle rest mass
and the ‘‘quantized magnetic energy.’’ The quantum con-
tribution tends to become more and more significant as the
density increases and as the magnetic field decreases.
For simplicity we assume a two dimensional variation

with @=@z ¼ 0 and r ¼ êxd=dxþ êyd=dy. For the spin
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vector S, we propose the solution: Sðx; yÞ ¼ êxgðxÞ cosyþ
êygðxÞ sinyþ êzfðxÞ, such that f2 þ g2 ¼ 1. For this an-

satz, only the êz component survives for the spin vorticity,
�q ¼ �êzf

0ðxÞ, where 0 ¼ d=dx.

The inherent symmetry of the system suggests the fol-
lowing form for the magnetic field: b ¼ êxp1ðxÞ cosyþ
êyp2ðxÞ sinyþ êzp3ðxÞ. For these forms of S and B, the

equilibrium set reduces to ordinary differential equations
in x. Equations (25) and (26) yield

2p1 � p00
1 ¼ aðg0 þ gÞ; (27)

2p2 � p00
2 ¼ �aðg00 þ g0Þ; (28)

p00
3 � p3 ¼ aðf00 þ f0Þ; (29)

out of which (28) collapses to (27) because r � b ¼
ðp0

1 þ p2Þ cosy ¼ 0 (or p2 ¼ �p0
1).

The set (27)–(29) is augmented by a third equation
derived from Eq. (24) whose left-hand side is identically
zero and the right-hand side has only êz component. The
third equation gðp00

1 þ p0
1Þ ¼ g0ðp0

1 þ p1Þ integrates to
p0
1 þ p1 ¼ �g; (30)

where � is a constant which must be determined by bound-
ary conditions. The fields b and S will be known when we
solve Eqs. (27), (29), and (30). In analogy with a super-
conducting solution, let us consider a domain 0< x < L
(with periodic behavior in y), with L � 1 (normalized
to the skin depth). It is straightforward to verify that a

consistent solution to the whole system is: gðxÞ ¼ ekðx�LÞ

(g � 1), p1 ¼ �ekðx�LÞ=ðkþ 1Þ, and

p3ðxÞ ¼ ex�L þ aex
Z x

L
dx0ex0

d

dx0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2kðx0�LÞ

p
; (31)

where we have used f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
. The scale factor k ¼

ð�aq �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ aq

p Þ=ð1þ aqÞ, where aq ¼ a=�.

Remembering that the classical solution is normally
taken to be b1 ¼ 0 ¼ b2, and b3 ¼ ex�L [extreme diamag-
netism (L � 1) with a nonzero field limited to a skin-depth
wide region], we find that the spin field has transformed it
fundamentally: (1) The field b3 ¼ p3 in the spinning
plasma has an additional quantum contribution propor-
tional to a with a new ‘‘quantum scale’’ k; (2) magnetic
field components perpendicular to spin vorticity, b1 ¼
p1 cosy, and b2 ¼ �p1

0 siny, emerge; their magnitude is
proportional to the spin vorticity. Detailed discussion and
implications of this particular solution, and also of other
solutions, including the ones in which the quantum spin
vorticity may dominate its classical counterparts, will be
given in a future paper. The main objective of this Letter
was to construct an appropriate spin or quantum vorticity
that will lead to the emergence of a new generalized
quantum vorticity�� obeying the standard vortex dynam-
ics of the Helmholz form. Finding �� that guarantees the

existence of a dynamical helicity invariant, constitutes the
main mathematical results of this Letter. It is hoped that the
vortex dynamic structure will greatly aid in extracting new
physics inherent in the spinning plasmas.
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[29] I. Bialynicki-Birula, P. Górnicki, and J. Rafelski, Phys.

Rev. D 44, 1825 (1991).
[30] J. D. Bekenstein, Astrophys. J. 319, 207 (1987).
[31] S.M. Mahajan, Phys. Rev. Lett. 90, 035001 (2003).
[32] S.M. Mahajan, Phys. Rev. Lett. 100, 075001 (2008).

PRL 107, 195003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 NOVEMBER 2011

195003-4

http://dx.doi.org/10.1103/PhysRevLett.98.025001
http://dx.doi.org/10.1103/PhysRevLett.98.025001
http://dx.doi.org/10.1088/1367-2630/9/8/277
http://dx.doi.org/10.1103/PhysRevLett.100.075001
http://dx.doi.org/10.1103/PhysRevLett.81.4863
http://dx.doi.org/10.1103/PhysRevLett.81.4863
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1143/PTP.14.283
http://dx.doi.org/10.1143/PTP.12.810
http://dx.doi.org/10.1143/PTP.12.810
http://dx.doi.org/10.1143/PTP.13.222
http://dx.doi.org/10.1103/PhysRev.102.297
http://dx.doi.org/10.1007/BF02745412
http://dx.doi.org/10.1143/PTPS.4.2
http://dx.doi.org/10.1143/PTPS.4.2
http://dx.doi.org/10.1143/PTP.70.1
http://dx.doi.org/10.1088/0368-3281/2/1/301
http://dx.doi.org/10.1063/1.1706193
http://dx.doi.org/10.1017/S0022377800020948
http://dx.doi.org/10.1103/PhysRevE.62.2763
http://dx.doi.org/10.1103/PhysRevE.62.2763
http://dx.doi.org/10.1103/PhysRevE.65.046417
http://dx.doi.org/10.1103/PhysRevE.65.046417
http://dx.doi.org/10.1063/1.1939947
http://dx.doi.org/10.1016/j.physleta.2009.11.011
http://dx.doi.org/10.1007/BF02557315
http://dx.doi.org/10.1007/BF02557315
http://dx.doi.org/10.1007/s11182-008-9009-2
http://dx.doi.org/10.1007/s11182-008-9009-2
http://dx.doi.org/10.1103/PhysRevLett.101.245002
http://dx.doi.org/10.1088/1367-2630/12/4/043019
http://dx.doi.org/10.1088/1367-2630/12/7/073027
http://dx.doi.org/10.1063/1.3496053
http://dx.doi.org/10.3367/UFNe.0180.201001b.0055
http://dx.doi.org/10.1063/1.3533448
http://dx.doi.org/10.1103/PhysRevA.18.1250
http://dx.doi.org/10.1016/0003-4916(85)90117-4
http://dx.doi.org/10.1063/1.3590865
http://dx.doi.org/10.1103/PhysRevD.44.1825
http://dx.doi.org/10.1103/PhysRevD.44.1825
http://dx.doi.org/10.1086/165447
http://dx.doi.org/10.1103/PhysRevLett.90.035001
http://dx.doi.org/10.1103/PhysRevLett.100.075001

