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The onset of abrupt magnetic reconnection events, observed in the nonlinear evolution of double tearing

modes (DTM), is investigated via reduced resistive magnetohydrodynamic simulations. We have iden-

tified the critical threshold for the parameters characterizing the linear DTM stability leading to the

bifurcation to the explosive dynamics. A new type of secondary instability is discovered that is excited

once the magnetic islands on each rational surface reach a critical structure characterized here by the

width and the angle rating their triangularization. This new instability is an island structure-driven

nonlinear instability, identified as the trigger of the subsequent nonlinear dynamics which couples flow

and flux perturbations. This instability only weakly depends on resistivity.
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Multiple current sheet configurations can be found in
simple models of space and stellar plasmas [1,2], as well as
in tokamaks with reversed magnetic shear profiles [3].
Recently, the striking phenomenon of the sudden kinetic
energy onset in the double tearing mode (DTM) evolution
and subsequent explosive behaviors has been found in
resistive MHD simulations in cylindrical geometry [4,5].
The DTM consists of the development of plasmoids in two
nearby current sheets (magnetic field discontinuity), and
their associated nonlinear dynamics are of specific impor-
tance in reaching a full understanding of fast dynamics
related to magnetic reconnection. Interestingly, the time
scale of DTMs weakly depends on the resistivity � once
the onset takes place [6]. The phenomenon is crucial since
the long-standing trigger problem leading to fast magnetic
reconnection (� �0 dependency) in collisional plasmas
can be reproduced in a simple resistive MHD framework.
Note that such a nonlinear secondary growth can also exist
in m ¼ 1 resistive mode [7], and accelerated reconnection
evolutions were found and thoroughly investigated in [8].

Ishii et al. proposed a flux structure-driven nonlinear
instability where the triangularization of magnetic islands
and its associated current point similar to the Petschek
model [4,5] play an important role. Wang et al., who found
similar results in slab geometry [6], showed another pos-
sibility for this universal event in terms of reconnection
driven by intrinsic localized shear flows resulting from
magnetic island deformation. However, the underlying
physical mechanisms, particularly for the trigger leading
to an accelerated growth, has not yet been unveiled.

In this Letter, we identify a new type of secondary non-
linear instability as the key role for the onset of fast recon-
nection. The free energy of the instability is found to be
related to the two-dimensional asymmetry of the magnetic
islands, so that the growth rate becomes weakly dependent
on the resistivity. At the same time, we characterize a
critical structure in terms of width and angle rating the

deformation from which the secondary instability can be
driven.
First, DTM simulations are numerically performed,

based on the reduced MHD equations in slab geometry
(assuming an incompressible flow and a strong magnetic
guide field Bz [9]), so as to obtain the evolution of c
(magnetic flux) and � (kinetic flow). The normalization
terms are the Alfvén transit time �A for the time variables
and a characteristic unit length a for the spatial ones. The
equilibrium flow �0 is 0 and the equilibrium field is
the same as in [10]. Here, the two unstable current sheets
exist at xs ¼ �0:80 and the equilibrium current profile is
kept constant to ensure a continuous linear driving force
throughout the simulation. We employ a finite difference
method in the x direction (conducting walls at x ¼ �5)
and a spectral method in the y direction. The numerical
decomposition set is 2048� 10, and in the following
m ¼ 1 is the only linearly unstable mode. The box size
in the y direction is ly ¼ 2�Ly, and Ly can be changed

in order to select different wavelengths of the unstable
m ¼ 1 mode. The resistivity � can be changed while the
viscosity �� 0.
Figure 1(a) shows the nonlinear evolution of the mag-

netic energy (EM ¼ h ~c 2i=2, black dashed line) and kinetic
energy (EK ¼ h ~�2i=2, red plain line) of a DTM with
Ly ¼ 0:90. In Fig. 1(b), the instantaneous growth rate of

the kinetic energy �K ¼ @tEK=EK is also plotted. This
case is typical in exhibiting explosive dynamics: after the
usual exponential growth up to t� 1000 (constant �K),
both EM and EK slow down during the Rutherford transi-
tion. This regime corresponds to the decoupling of the flow
and the flux [11] such as found in tearing modes; i.e., �
almost saturates and remains quasisteady while c grows
algebraically in time as seen for 1000< t < 4000. Note
that the instantaneous growth rate scales in this regime as
�� �1. After this long evolution, an abrupt growth and
full reconnection are found to take place during a shorter
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time scale for 4000< t < 5000. Checking the convergency
of the simulation ensures that the latter is not numerical.
This behavior confirms those found in other cylindrical and
slab geometries [4,6]. Normally, the Rutherford regime is
associated with decreasing �K while here, at a critical time
tc ¼ 3000 (green arrow), there is an inflection point in the
kinetic energy evolution, calculated when @t�K ¼ 0 (when
the second derivative of EK becomes null). This critical
time may then correspond to the change in the DTM
characteristics and is associated with the explosive growth
clearly seen around t1 � 4500 (blue arrow). After a delay,
the growth of EM also results in an abrupt enhancement
around t2 � 4700. Assuming that there exists a causality
relation tc < t1 < t2, the increase of the kinetic flows
around t1 after the onset at tc must be important for
triggering the second growth of the magnetic flux around
t2, although EK � EM.

To confirm this conjecture, we investigate similar
dynamics for different unstable wavelengths with
Ly ¼ 0:75 ! 0:90, as illustrated in Fig. 2(a). As Ly re-

duces, so does the linear growth rate, while the Rutherford
regime becomes longer. The sudden growth of the energy
observed in Fig. 1(a) exists as well for both Ly ¼ 0:8

and 0.76 at later times but completely disappears for
Ly ¼ 0:75. Note that tc and t1; t2 defined from Fig. 1 also

exist and satisfy the causality relation tc < t1 < t2 (black
arrows). More interestingly, although Ly ¼ 0:76 corre-

sponds to a 1.3% increase from Ly ¼ 0:75, their evolutions

are different: the explosive dynamics is triggered in the first
case, whereas not in the latter for which both EK and EM

saturate. This difference is clearly seen in Fig. 3 where
snapshots of the magnetic flux contour are given for differ-
ent times of the evolution of Ly ¼ 0:75 [Fig. 3(a)] and

Ly ¼ 0:76 [Fig. 3(b)]. The islands stop evolving in 3(a),

whereas they continue growing in 3(b) until they are struc-
turally deformed to a triangular shape [3(b)(iii)] that allows
a complete reconnection of the magnetic field lines at
further times [3(b)(iv)]. These results clearly show the

existence of a critical threshold in the 2D island structure
leading to the bifurcation in the nonlinear dynamics.
Similar characteristics of DTMs also exist with respect

to the position of the rational surfaces xs [4,12], so that we
systematically explore the two-parameter space (xs; Ly) for

which the two kinds of nonlinear evolution are obtained
(defined as the saturation case and the nonlinearly desta-
bilized case). The results are plotted in Fig. 2(b), where the
triangles represent saturation cases and the squares explo-
sive DTMs. The solid line corresponds to the boundary
between the two states. The nearly linear behavior of that
boundary in (xs; Ly) space suggests a similarity of the

magnetic structure driving the abrupt dynamics. This gives
solid grounds to the idea that the second increase of the
kinetic flows around tc, causing the onset of enhanced
magnetic growth from t2, results from the generation of a
new instability, existing in a domain bounded by the solid
line in Fig. 2(b). From the dynamics of the magnetic
islands as discussed in Fig. 3, the development of a mag-
netic structure that is associated with a strong triangulari-
zation is assumed to play the role of a new free energy
source for a secondary instability, marking the transition
from steady configurations to explosive growths.
Now, a new methodology is proposed to confirm such an

idea: we perform a linear stability analysis of equilibria
with the magnetic islands obtained from the previous non-
linear simulations to disclose the secondary instability
associated with the two-dimensional deformation of the
islands. As the magnetic islands evolve on a long time
scale during the Rutherford regime (compared to the linear
or explosive growths), we can define quasiequilibria from
those structures. The variables associated with such equi-
libria are expressed as c eq and �eq and the new flux and

flow perturbations are written ~c and ~�. Contrary to the
standard 1D current sheet model, c eq and �eq are now

FIG. 2 (color online). (a) Time evolution of the magnetic

energy E
Ly

M (double line) and the kinetic energy E
Ly

K (single

line) for instabilities with different wavelengths 2�Ly. The black

arrows show the start of the explosive growth. (b) Diagram of
saturated (plain triangles) and explosive DTMs (squares) ob-
tained in function of the position of the rational surfaces (xs) and
the wavelength of the instability Ly. The solid line indicates the

transition.

FIG. 1 (color online). (a) Time evolution for the magnetic
(EM) and kinetic (EK) energies. At t ¼ tc, EK has an inflection
point (green arrow), calculated from (b) the instantaneous non-
linear (NL) growth rate evolution �K

NL ¼ @tðEKÞ=EK.
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functions of both x and y so as to reproduce the 2D
structure deformation of the magnetic field corresponding
to the islands and their flows. The linearized equations are

@r2 ~�

@t
¼ �½ ~�;r2�eq� � ½�eq;r2 ~�� þ ½c eq;r2 ~c �

þ ½ ~c ;r2c eq�; (1)

@ ~c

@t
¼ �½ ~�; c eq� � ½�eq; ~c � þ �r2 ~c ; (2)

where different harmonics are coupled with each other due
to the Poisson brackets (½A; B� ¼ @xA@yB� @yA@xB).

Equations (1) and (2) determine the set of eigenfunctions

( ~c ; ~�) and the corresponding growth rate �S for given
equilibrium variables (c eq; �eq, representing DTM struc-

tures at instantaneous times of the original simulation).
To characterize the structural deformation of the quasie-

quilibrium magnetic islands, the couple of parame-
ters (w; �) is chosen, corresponding to the width or angle
rating the triangularization (shown in Fig. 3). Figures 4(a)
and 4(b) present the evolution of �S in function of w and
� for Ly ¼ 0:75 ! 0:90. When ðw; �Þ ¼ ð0; 180�Þ, corre-
sponding to initial sheets with no islands, the original DTM
linear growth rate for each case is recovered. Looking at
the evolution of �S ¼ fðwÞ [and also �S ¼ gð�Þ], it is
possible to define three phases. The first phase corresponds
to the decrease of the growth rate that can be understood as
follows: the current sheets are now flattened by the pres-
ence of the magnetic islands, so that the bigger those
islands are, the less free energy there is to drive a
current-driven instability. We refer to this region as
phase I, as indicated in the graphs. For Ly ¼ 0:75, where

the system is subcritical for the explosive dynamics

(saturated case), the growth rate �S decreases from
ðw; �Þ ¼ ð0; 180�Þ and becomes negative around ðw; �Þ ¼
ð0:5; 168�Þ.
For cases with larger Ly, e.g., Ly ¼ 0:76, corresponding

to explosive systems, the dynamics in phase I is similar to
that of Ly ¼ 0:75 since the linear DTM characteristics are

identical. However, beyond a stability window (indicated
in Fig. 4 with red squares), �S is found to increase again
around ðw; �Þ ¼ ð1:1; 155�Þ as the islands grow bigger. We
define this stage as phase III and the stability window as
phase II. This is a strong evidence of the emergence of a
new type of instability, different from that in phase I (linear
DTM): since the instability appears while the free energy
associated with the current sheets is minimal and cannot
drive current instabilities, we can conclude that the new
growth results from the development of the 2D asymmetric
island deformation and we refer to it as a structure-driven
nonlinearity. Note that the existence of a critical threshold
for (w; �) could also be interpreted as a delicate balance

FIG. 4 (color online). Linear growth rate �S of instabilities in
function of (a) the equilibria island width w and (b) the defor-
mation angle � for different wave numbers 2�Ly.

FIG. 3 (color online). Two-dimensional contour plot of the magnetic flux c for Ly ¼ 0:75 [(a), saturated DTM] and 0.76 [(b),
nonlinearly destabilized DTM].
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between destabilizing and stabilizing forces (e.g., mag-
netic pressure and tension), associated with the triangula-
rization of the islands. Further increase of Ly leads to a

shrunken stability window, so that for Ly ¼ 0:80, it has

disappeared since the resistive DTM instability (phase I)
and the secondary instability (phase III) merge and over-
lap, showing a jump in @w�S and @��S at ðw; �Þ ¼
ð0:8; 164�Þ. With Ly ¼ 0:90, phase I connects to

phase III continuously (phase II disappears) at the inflec-
tion point of the �S evolution, given as @w�S ¼ @��S ¼ 0.
The critical island parameters characterizing this threshold
correspond to w ¼ 0:8 and � ¼ 164�, similar to Ly ¼
0:80.

Figure 5 presents the evolution of �S in function of w
for Ly ¼ 0:9, and � is changed from 10�4 (red squares) to

5� 10�4 (blue dots). Then, the growth rate �S decreases
and becomes minimal around w ¼ 0:8, and in this phase
the slope is different depending on the resistivity. This
confirms that phase I corresponds to the evolution of a
current-driven instability (� dependent). From the value
w� 0:8, similar for both cases with different resistivities,
the growth rate bifurcates and increases (phase III), and as
the slope �S ¼ fðwÞ is the same for both cases, it is
possible to say that phase III corresponds to the evolution
of an instability weakly dependent on the diffusion
term, but strongly on the structural deformation of the
equilibria containing developed magnetic islands. This
result is a strong confirmation that the secondary instability
is not current driven. Interestingly, for well-developed
and triangular islands w> 1:2, the relation linking �S to
w has the form �S � expð�wÞ, with � constant and inde-
pendent of �.

In Fig. 6, the eigenfunction profile obtained in the
phase III of the secondary instability analysis is compared
with the ones from the initial DTM simulation (with
Ly ¼ 0:90, � ¼ 10�4). Two profiles from the m ¼ 1 com-

ponent of the flux and flow function, denoted c eq and �eq,

are taken at t ¼ 3000 (black solid line) and t ¼ 4000
(green doubled line) of the initial DTM. The m ¼ 1 eigen-

functions ~c and ~� from the secondary analysis with a

quasiequilibrium equivalent to c eq and�eq at t ¼ 3000 are

shown with the red dashed line. The amplitudes are re-
scaled to allow comparisons of the structural changes.
From it, it is possible to say that the evolution of the
DTM from t ¼ 3000 to 4000 is driven by the secondary
instability: the change from the eigenfunctions
c eqð3000Þ; �eqð3000Þ to c eqð4000Þ; �eqð4000Þ indeed cor-
responds to the tendency given by the development of the

secondary instability eigenfunctions ~c ; ~�. In other words,
the m ¼ 1 flux and flow components c eq; �eq, found at a

time tþ�t (�t > 0 being an arbitrary time step) of the
nonlinear DTM evolution, result from the evolution of the
structure at t associated with the growth of the secondary
instability generated by this structure at the same time.
Note here that c eqð3000Þ and �eqð3000Þ are independent

due to the decoupling between the flux and the flow in the
Rutherford-like regime as discussed in Fig. 1. On the other

hand, ~c and ~� obtained via the secondary instability
analysis are coupled (linear global eigenfunction with a
single growth rate �S). Therefore, during the evolution
from tc � 3000 to t1 � 4000 (Fig. 1), the independent
variables (c eq; �eq) become dependent, resulting in global

characteristics at t ¼ 4000. This subsequent coupling be-
tween the flux and the flow is considered to play an
important role in enhancing the spontaneous growth rate
observed from t1 to t2.
So far, we have shown that the spontaneous secondary

growth in the nonlinear development of DTMs is linked to
the generation of a secondary instability, developing to
exhaust the free energy associated with the magnetic island
structure. Now, on one hand, the evolution of the island
width is found to be w� t in the Rutherford-like regime of
DTMs. On the other hand, from phase III in Fig. 4(a), the
growth of the secondary instability for a given equilibrium
is written �S � expð�wÞ. The relation �S � expð�tÞ is
then deduced linking �S to the instantaneous time evolu-
tion of the original DTM. From the critical time tc, poten-
tial flows are then expected to evolve instantaneously as

FIG. 5 (color online). Linear growth rate �S of the perturbation
for Ly ¼ 0:90 in function of the quasiequilibria islands width w,

for � ¼ 10�4 (red squares) and 5� 10�4 (blue circles).

FIG. 6 (color online). Profiles of (a) c (flux) and (b) � (flow)
eigenfunctions of the original DTM at t ¼ 3000 (black solid
line) and t ¼ 4000 (green doubled line) compared with the
secondary instability analysis eigenfunction (red dashed line)
corresponding to t ¼ 3000 of the original DTM.
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�� expð�StÞ � expðe	ttÞ, exhibiting an explosive fast
growth as formerly seen in Fig. 1(a). Once secondary flows
are triggered, successive nonlinear coupling chains estab-

lishing a positive feedback loop are expected: ~� and c eq

(where c eq denotes the 2D magnetic structure at time t)

couple through the Poisson brackets [ ~�; c eq], enhancing ~c
which subsequently triggers the magnetic flux at t ¼ t2
[Fig. 1(a)]. Then, the enhanced ~c further accelerates ~�

through the Maxwell stress [ ~c ;r2 ~c ], leading to the abrupt
full reconnection as shown in Fig. 3 for Ly ¼ 0:76. Note

that this process exists along with the coupling between the
flux and the flow leading to a globalization of the mode
structure as discussed in Fig. 6. During the fast explosive
growth, the magnetic and kinetic energies of the global
mode are still sustained by the time independent 1D current
equilibrium gradient at the rational surfaces.

In this Letter, we investigated the origin of the trigger of
the sudden explosive magnetic reconnection in the DTM in
a slab geometry with a strong guide field. By means of a
secondary instability analysis of the quasisaturated equi-
libria obtained during the nonlinear DTM, we found for the
first time that the onset consists in the development of a
new type of instability whose free energy is ascribed to the
slowly evolving 2D magnetic island deformation. The
following growth of the potential flow due to this second-
ary instability is found to be essential in leading the
explosive reconnection dynamics though its energy level
is low compared with that of the magnetic flux. We also
found that the secondary instability shows a weak

resistivity dependency compared with that of the linear
DTM. Considering that the instability is induced intrinsi-
cally from the slow time scale evolution of the system, this
structure-driven nonlinear instability is expected to play a
key role in understanding the physical mechanism of the
onset of sudden and fast magnetic reconnection events, a
long-standing problem in solar or space physics and mag-
netically confined fusion plasmas.
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