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We consider a general image sensing framework that includes many quantum sensing problems by an

appropriate choice of image set, prior probabilities, and cost function. For any such problem, in the

presence of loss and a signal energy constraint, we show that a pure input state of light with the signal

modes in a mixture of number states minimizes the cost among all ancilla-assisted parallel strategies.

Lossy binary phase discrimination with a peak photon number constraint and general lossless image

sensing are considered as examples.
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The use of nonclassical and entangled states of light, i.e.,
states other than the easily generated coherent states and
their classical mixtures [1], for applications such as sub-
shot-noise imaging [2] and imaging with sub-Rayleigh
resolution [3] has received much attention. In the areas
of sensing and metrology [4], there have been recent
theoretical studies of quantum-enhanced target detection
[5], reading of a digital memory [6,7], and of optical phase
estimation [8] with nonclassical states. Given the interest
in applications of quantum states of light for sensing, it is
important to theoretically establish what state(s) accom-
plish a sensing task using minimum energy, assuming
the most general measurements and postprocessing. This
would place a limit on the enhancements obtainable
from nonclassical states using experimentally realizable
measurements. The ubiquitous linear loss is known to
be a bottleneck for harnessing quantum advantage in
many communication and metrology applications [8,9].
Although the problems of [5–7] naturally include various
degrees of loss, few general results including its effects are
available. In this Letter, we first set up a general framework
for image sensing in the presence of loss that subsumes
many of the above problems. We then identify a class of
input states that contains an optimal, i.e., cost-minimizing,
state for any problem fitting the framework, and under any
form of signal energy constraint.

General image sensing framework—Suppose an image
is drawn, unknown to the receiver, from a set I ¼
fI1; . . . ; IMg of M images according to the probability
distribution f�1; . . . ; �Mg. We model each image as a
pixelated (transmissive or reflective) optical mask with
uniform transmissivity or reflectivity and phase shift within
each pixel. For P the number of pixels in each image, the
pth pixel (p 2 f1; . . . ; Pg) of image Im is modeled as a
beam splitter effecting the mode transformation
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Here �ðpÞ
m is the transmittance (or reflectance if reflective

probing is used) of the pth pixel in Im, and �
ðpÞ
m is the phase

shift imparted to the input (or ‘‘signal’’) field modes prob-
ing the pth pixel of Im alone.
For probing the unknown image, we consider quantum

states of J ¼ P
P
p¼1 J

ðpÞ signal modes that may be en-

tangled to ancilla (or ‘‘idler’’) modes that are not sent out
to interrogate the image but held losslessly (see Fig. 1).

Here, JðpÞ is the number of modes interrogating pixel p,
which, for example, could be successive time modes.

Equation (1) includes the annihilation operator âðpÞj of the

jth signal field mode probing pixel p and the annihilation

operator êðpÞj of the jth input environment mode at p. The

input environment modes are taken to be in the vacuum
state—the assumption of no thermal noise in the environ-
ment is realistic at optical frequencies. We further assume

that the output mode corresponding to b̂ðpÞj in (1), but not

that corresponding to f̂ðpÞj , is available for making quantum

measurements. This is almost always the case in practice as
the environment input and output modes are not easily
accessible to the user in a standoff imaging scenario, or
if the light source and receiver are at different spatial

FIG. 1. Schematic of procedure for sensing of an unknown

image from a set I with pixels described by (�ðpÞ
m , �ðpÞm ), p ¼

1; . . . ; P, via (1). The source generates signal modes fâðpÞj g for
probing the image and idler modes which are retained losslessly.
An optimal measurement for x 2 X is made on the J return

modes fb̂ðpÞj g and J0 idler modes jointly.
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locations. Additional loss during state propagation may be

included as a multiplicative factor in the f�ðpÞ
m g.

We first consider pure input states; we will return to the
mixed input state case later. An arbitrary pure quantum
state jc iIS of the signal and idler modes may be written in
the form

jc iIS ¼
X
n

cnj�niIjniS: (2)

Here n ¼ ðnð1Þ1 ; . . . ; nð1Þ
Jð1Þ ; . . . ; n

ðPÞ
1 ; . . . ; nðPÞ

JðPÞ Þ is a

J-dimensional vector whose component nðpÞj indexes the

photon number in the jth mode interrogating the pth pixel,
and jniS are Fock states of the signal modes. We do not
restrict the number J0 of the idler modes, nor the form of
the idler states j�niI, only requiring that they be normal-
ized. Allowing an arbitrary input state (2) corresponds to
the most general ancilla-assisted parallel strategy (see [4]
for discussion on parallel strategies). Little is known about
nonparallel strategies (but see [10]) that may include adap-
tive selection of inputs, which is known to assist some
channel discrimination problems [11]. Irrespective of the
form of the fj�niIg, the probability mass function (PMF) of
the photon number in the signal modes is pn ¼ jcnj2,
which determines quantities of interest such as the mean
total signal energy

�XP
p¼1

XJðpÞ
j¼1

N̂ðpÞ
j

�
¼ X

n

npn;

where

n ¼ XP
p¼1

XJðpÞ
j¼1

nðpÞj � XP
p¼1

nðpÞ:

In practice, the mean total signal energy may be upper
bounded by a given number NS.

Once an input state jc iIS is chosen and the signal modes
are sent to probe the image, the returnþ idler states con-
stitute an ensemble E ¼ fð�m; �mÞgMm¼1, where �m ¼ idI �
Kmðjc iIShc jÞ is the density operator on the returnþ idler
Hilbert space at the output of the quantum channel
idI �Km resulting from the interaction of the signal
modes with Im via (1) and the identity map on the idler
modes. Depending on the imaging task, we attempt to
extract a parameter lying in an observation space X by
making a quantum measurement that is represented by a
positive operator-valued measure (POVM) [12] with out-
comes x 2 X and corresponding operators fExgx2X . The
task also specifies a cost function Cðm; xÞ, and we are
interested in the minimum average cost �C

�C½E� ¼ min
fExg

X
x2X

XM
m¼1

�mtrð�mExÞCðm; xÞ; (3)

where the minimization is over all POVMs fExgx2X.
Therefore, adaptive measurements are included in our
model. Note that the input state and image parameters
enter into the cost via the ensemble E while the imaging
task determines X and the cost function. Thus, choosing
X ¼ f1; . . . ;Mg and Cðm; xÞ ¼ 1� �m;x makes �C½E�
equal the minimum probability of error (MPE) in discrimi-
nating the M images. For the same cost function, M ¼ 2,

P ¼ 1, and �ð1Þm � 0 correspond to the quantum reading
and target detection problems of [5–7]. For P ¼ 1 and

�ð1Þ
m � �, choosing X ¼ ½0; 2�Þ and Cðm;xÞ¼ ½x��ð1Þm �2

corresponds to minimum-mean-square-error (MMSE)
phase discrimination in the presence of loss. As M ! 1,
we approach MMSE phase estimation in loss. The usual
interferometric setup for phase estimation [4,8] is recov-

ered using P ¼ 2, m ¼ ð�;�Þ 2 ½0; 2�Þ2, �ð1Þm ¼ �þ �,

�ð2Þm ¼ �, and the cost function Cðm; xÞ ¼ ½x� ��2. Here
� is the relative phase shift of interest and � is the un-
desired common phase shift in both arms of the interfer-
ometer (see Fig. 2).
In the state (2), if j�niI � j�iI for all n and some idler

state j�iI, the state factorizes so that the idler is effectively
absent. The other extreme is the case of h�nj�n0iI ¼ �n;n0

so that the density operator on the signal modes is diagonal
in the multimode Fock basis. Such states are called
number-diagonal signal (NDS) states in [7], well-known
examples being the two-mode squeezed vacuum of [5,6]
and the NOON state [13]. In [7], the error probability and
other quantities of interest were computed for NDS inputs
in the M ¼ 2 case. Our main result is that the NDS states
are optimally ‘‘matched’’ to the general imaging problem
described above.
Theorem 1.—(NDS state lower bound.) Let I be a set of

M P-pixel images described via transformations of the
form (1) with prior probabilities f�mgMm¼1. For any imaging

task with cost function Cðm; xÞ, the minimum cost �C
achieved by the input state jc iIS ¼ P

ncnj�niIjniS is
lower bounded by that achieved by a corresponding NDS
state j�iIS ¼ P

ncnj�niIjniS, where fj�niIg is any ortho-
normal set, with the same signal photon PMF.
General results in quantum decision theory.—The proof

of Theorem 1 requires two simple but general results in
quantum decision theory. To state them, we define the
notion of mixture of ensembles. For each value of an

FIG. 2. Image sensing problems in linear loss. Left: Quantum
reading—digital reader composed of a transmitter T and receiver
R. Right: Interferometer for discrimination or estimation of the
relative phase shift � with two-mode signal-only source S and
detector D.
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arbitrary index l with associated probability �l, let El ¼
fð�ðlÞ

m ; �ðlÞ
m ÞgMm¼1 be anM-ary ensemble of states in a Hilbert

space H . Then the M-tuple of pairs

E ¼ X
l

�lEl :¼
8><
>:
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>;

M
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(4)

is also an ensemble, called the mixture of the ensembles
fElg—the fElg are subensembles of E. A mixture of ensem-
bles can arise from a two-step procedure in which l is
chosen with probability �l, following which the state

�ðlÞ
m is prepared with probability �ðlÞ

m . In our proof of
Theorem 1, subensembles arise as the conditional output
states of a measurement with outcomes flg on a given
ensemble. We have the following basic result.

Lemma 1.—(Concavity of �C under mixing of ensem-
bles.) Consider a sensing task with cost function Cðm; xÞ.
For M-ary ensembles fElg indexed by l, and probability
distribution f�lg,

�C

�X
l

�lEl

�
� X

l

�l
�C½El�: (5)

The notion of orthogonal ensembles provides a sufficient
condition for equality in (5). The support of an ensemble
E ¼ fð�m; �mÞgMm¼1 is defined to be supp E :¼P

M
m¼1 ran �m, where ran �m is the range of �m. Then

ensembles E and F are said to be orthogonal if the support
spaces supp E and supp F are orthogonal.

Lemma 2.—If fElg are pairwise orthogonal ensembles on
H , we have

�C

�X
l

�lEl

�
¼ X

l

�l
�C½El�: (6)

The proofs of Lemma 1 and 2 are given in [14] along with
their physical interpretation.

Proof of Theorem 1.—Suppose the general state (2) is
used as input. To calculate the output states f�mgMm¼1, we
may use the Schrödinger-picture form of (1) to get the
purification

jc mi ¼
X
l

�X
n�l

cnA
ðn:lÞ
m j�niIjn� liS

�
jliE (7)

� X
l

jc ðlÞ
m iISjliE; (8)

where jliE is a Fock state of the environment modes and
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m ¼YP
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The output state �m is then given by (note that jc ðlÞ
m iIS are

non-normalized states)

�m ¼ X
l

jc ðlÞ
m iIShc ðlÞ

m j: (9)

In (7)–(9), l is the (random and unknown) pattern of the
number of photons leaked from the signal modes into the
environment modes during interrogation of the image.
The probability that the leaked photon pattern is l is

�l ¼
XM
m¼1

�mhc ðlÞ
m jc ðlÞ

m iIS (10)

so that the conditional probability of hypothesis m given
l is

�ðlÞ
m ¼ �mhc ðlÞ

m jc ðlÞ
m iIS

�l

: (11)

Thus, the ensemble

E ¼ fð�m; �mÞgMm¼1 ¼
X
l

�lEl (12)

for the subensembles fElg given by

E l ¼
8<
:
0
@�ðlÞ

m ;
jc ðlÞ

m iIShc ðlÞ
m j

hc ðlÞ
m jc ðlÞ

m iIS

1
A
9=
;

M

m¼1

: (13)

According to Lemma 1, the mixture (12) satisfies

�C½E� � X
l

�l
�C½El�: (14)

Consider the right-hand side (rhs) of (14). For each l, El

is a pure-state ensemble, so �C½El� is a function of just

the pairwise inner products hc ðlÞ
m jc ðlÞ

m0 iIS � GðlÞ
m;m0 , the

M�M Gram matrix [15]

GðlÞ
m;m0 ¼

X
n�l

pnA
ðn:lÞ�
m Aðn:lÞ

m0 : (15)

The crucial point is that, owing to the form (7) of the

beam splitter transformation, GðlÞ
m;m0 is independent of the

choice of the fj�niIg. From (10) and (11), so are �l and

�ðlÞ
m . Thus, the hypothetical measurement scenario in

which one has knowledge of l (or alternatively, one is
allowed to make a photon number measurement on all
the output environment modes) and whose �C is given by
the rhs of (14), has the same �C for any choice of the
fj�niIg.
Finally, we consider the NDS input state j�iIS ¼P
ncnj�niIjniS corresponding to (2) satisfying

h�nj�n0iI ¼ �n;n0 : (16)

It is readily verified using (7) and (16) that

hc ðlÞ
m jc ðl0Þ

m0 iIS ¼ �l;l0 hc ðlÞ
m jc ðlÞ

m0 iIS (17)

so that the fElg are pairwise orthogonal ensembles.
Therefore, by Lemma 2, the NDS input j�iIS attains
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P
l�l

�C½El�, and does so with the same signal photon PMF
as jc iIS.

Discussion and implications.—The �C of the NDS state
j�iIS of Theorem 1 is a function of only the J-mode
photon PMF fpng. Thus, for a given J, the search for an
optimal input state for a given imaging task may be con-
fined to the set of fpng satisfying given constraints, e.g., an
average or peak signal energy constraint or a mode-by-
mode signal energy constraint. As illustrated below, the
problem of finding the optimal quantum state reduces to
the classical problem of finding an optimal probability
distribution. To see that mixed input states �IS do not
help, we first purify �IS using added idler modes. As (2)
contains no restriction on the idlers, the NDS state corre-
sponding to the purification—which has the same fpng as
�IS—has �C not larger than that of the purification (which
in turn beats �IS). Note also that the performance
achieved by an arbitrary state of signal energy NS can
be achieved by an NDS state of total (signalþ idler)
energy not larger than 2NS by choosing j�niI ¼ jniI,
the Fock state of the idler modes.

Theorem 1 strongly suggests that ancilla-assisted paral-
lel strategies for image sensing are superior to signal-only
parallel strategies. This is known for discrimination be-
tween some pairs of channels [16] and is also true for our
phase discrimination example below. We conjecture that
they are strictly better whenever nonzero loss is present

(�ðpÞ
m < 1) because for a signal-only input state, the fElg are

not orthogonal and are unlikely to achieve the lower bound
of (14). Such ancilla-assisted schemes appear to be unex-
plored for some problems of interest—e.g., studies of the
optimal state for phase estimation in loss have hitherto
been confined to two-mode signal-only states [8]. At the
same time, Theorem 1 implies that the best possible per-
formance can be obtained without ancillary modes if the
value of l is known. This result should place interesting
limitations on the quantum advantage obtainable in any
sensing problem.

Binary phase discrimination.—As an application of
Theorem 1, we obtain the single-pass (J ¼ 1) state that
discriminates between a 0 and� phase shift with minimum
error probability among states with a peak signal photon
constraint of Npeak ¼ 2 in the presence of loss. In the

terminology of our framework, we have M ¼ 2, P ¼ 1,

�ð1Þ
1 ¼ �ð1Þ

2 ¼ �< 1, and �ð1Þ1 ¼ 0, �ð1Þ2 ¼ �. We also as-

sume �1 ¼ �2 ¼ 1=2. An arbitrary state jc iIS satisfying
these constraints is

jc iIS ¼ ffiffiffiffiffiffi
p0

p j�0iIj0iS þ ffiffiffiffiffiffi
p1

p j�1iIj1iS þ ffiffiffiffiffiffi
p2

p j�2iIj2iS;
(18)

where phase factors have been absorbed into the normal-
ized kets fj�niIg. In terms of the density operators �1 and
�2 defined earlier, the minimum error probability is given
by the Helstrom formula [12]

�P e ¼ 1
2 � 1

4k�1 � �2k1; (19)

where k � k1 is the trace norm. According to Theorem 1, we
may confine our search for optimal states to the NDS class
for which fj�niIg are orthonormal. For such states, the
minimum error probability is given in closed form by
Eq. (39) of [7]:

�PNDS
e ¼ 1

2 �
ffiffiffiffiffiffi
p1

p ½ðp0�þ p2�
3Þ1=2 þ ð2p2�ð1� �Þ2Þ1=2�:

Since p0 þ p1 þ p2 ¼ 1, we may consider p0 and p1 as
independent variables taking values in the triangle T
whose vertices have the (p0, p1) values (0,0), (1,0), and
(0,1). It is easy to show that �PNDS

e is identically 1=2 on
the p0 axis and that it has local minima on the p1 axis at
p1 ¼ p2 ¼ 1=2 and on the remaining boundary of the
triangle at p0 ¼ p1 ¼ 1=2. There also exists a local extre-
mum of �PNDS

e in the interior of T at the point

ðp�
0; p

�
1; p

�
2Þ ¼

�
1þ 2�� �2

2ð1þ �Þð3� �Þ ;
1

2
;

1

ð1þ �Þð3� �Þ
�
:

Figure 3 (left panel) shows �PNDS
e plotted over T for � ¼

0:6. The interior extremum point (p�
0, p

�
1, p

�
2) achieves the

minimum error probability. For comparison, we consider
also a signal-only input state of the form

jc iS ¼ ffiffiffiffiffiffi
p0

p j0iS þ ffiffiffiffiffiffi
p1

p j1iS þ ffiffiffiffiffiffi
p2

p j2iS: (20)

For each choice of (p0, p1) in T , the error probability
�P
signal-only
e is computed numerically using (19), and in

Fig. 3 (right panel), the difference �P
signal-only
e � �PNDS

e is
plotted on T . The difference is everywhere non-negative,
being zero on the two boundaries of T other than the
p1 axis.
Lossless image sensing.—In the lossless case, l ¼ 0

with probability one, so that the performance of the hypo-
thetical measurement described in Theorem 1 is attainable
with any choice of idler states. That performance is deter-
mined by the Gram matrix elements from (15)

FIG. 3. Left: The error probability �PNDS
e of the NDS state of

the form of Eq. (18) for � ¼ 0:6. Right: The difference
�P
signal-only
e � �PNDS

e between the error probabilities of correspond-
ing signal-only and NDS states as a function of (p0, p1).
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Gð0Þ
m;m0 ¼

X
n

�
pn

YP
p¼1

eið�
ðpÞ
m0 ��ðpÞm ÞnðpÞ

�

� X
�

p�e
i
P

P
p¼1

ð�ðpÞ
m0 ��ðpÞm ÞnðpÞ

;

where � ¼ ðnð1Þ; . . . ; nðPÞÞ has PMF p�. Choosing j�niI �
j�iI, the signal-only state

jc iS ¼
X
�

ffiffiffiffiffiffi
p�

p jnð1Þ; . . . ; nðPÞiS

with JðpÞ ¼ 1, J0 ¼ 0 suffices to attain �C. In the absence
of loss, the fKmgMm¼1 are unitary channels. This result
shows that, among parallel strategies, ancillae do not
improve sensing of M unitary phase images under a signal
energy constraint. This is unlike the case of minimum
error probability discrimination of finite-dimensional
unitaries in [17], although ancillae are not required for
discriminating two unitaries [17,18]. The fact that single-

pass imaging (JðpÞ ¼ 1) suffices is also remarkable as
there are examples of pairs of unitaries that are better
(even perfectly) discriminated if multiple shots are al-
lowed [17,19].

We acknowledge useful discussions with Masoud
Mohseni and Jeffrey H. Shapiro. This work was supported
by DARPA’s Quantum Sensor Program under AFRL
Contract No. FA8750-09-C-0194.

[1] L. Mandel and E. Wolf, Optical Coherence and Quantum
Optics (Cambridge University Press, Cambridge, U.K.,
1995).

[2] G. Brida, M. Genovese, and I. Ruo Berchera, Nat. Photon.
4, 227 (2010).

[3] V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro,
Phys. Rev. A 79, 013827 (2009); M. Tsang, Phys. Rev.
Lett. 102, 253601 (2009); C. Thiel, T. Bastin, J. von

Zanthier, and G. S. Agarwal, Phys. Rev. A 80, 013820
(2009).

[4] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5,
222 (2011).

[5] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd,

L. Maccone, S. Pirandola, and J. H. Shapiro, Phys. Rev.

Lett. 101, 253601 (2008).
[6] S. Pirandola, Phys. Rev. Lett. 106, 090504 (2011).
[7] R. Nair, Phys. Rev. A 84, 032312 (2011).
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there exists a unitary Û connecting the two ensembles (and

also the POVMs on the two ensembles). This is seen by

performing Gram-Schmidt orthogonalization on the two
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