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Rabi Flopping Induces Spatial Demixing Dynamics
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We experimentally investigate the mixing and demixing dynamics of Bose-Einstein condensates in the
presence of a linear coupling between two internal states. The observed amplitude reduction of the Rabi
oscillations can be understood as a result of demixing dynamics of dressed states as experimentally
confirmed by reconstructing the spatial profile of dressed state amplitudes. The observations are in
quantitative agreement with numerical integration of coupled Gross-Pitaevskii equations without free
parameters, which also reveals the criticality of the dynamics on the symmetry of the system. Our
observations demonstrate new possibilities for changing effective atomic interactions and studying critical

phenomena.
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Critical phenomena appear in many areas of physics
including phase transitions [1] and nonlinear dynamical
systems [2]. Their experimental study requires a high level
of control in order to quantitatively compare with theoreti-
cal predictions.

Multicomponent Bose gases featuring miscibility-
immiscibility transitions are prototypical systems for the
investigation of critical phenomena due to unprecedented
experimental control of the relevant parameters. Early
experiments with Bose-Einstein condensates revealed
demixing as well as mixing dynamics of two- [3] and
three-component [4] quantum fluids. In the latter, even
spontaneous symmetry breaking and the corresponding
pattern formation has been observed [5,6]. While these
experiments have been performed with fixed interaction
between the components, atomic systems also allow for the
control of the interspecies interaction strength via a
Feshbach resonance. This has enabled experiments that
clearly demonstrate miscibility-immiscibility transitions
[7] and study the two-component dynamics in detail
[8-10]. An alternative approach for the control of interac-
tion properties and the corresponding dynamics in
one-dimensional systems has been demonstrated using
state-selective transversal confinement [11]. Recently it
has been shown that the miscibility characteristics of
spinor gases can be changed using Raman coupling [12].

In this Letter, we experimentally investigate the theo-
retically predicted miscibility properties of two spin states
in a Bose-Einstein condensate in the presence of linear
coupling [13—15]. We report on the experimental observa-
tion of the demixing dynamics of the relevant spin states,
i.e., dressed states. The (im)miscibility of the system mani-
fests itself in the amplitude of the Rabi oscillations, which
is given by the spatial overlap of the corresponding dressed
states. Employing both sides of an interspecies Feshbach
resonance, the miscible and immiscible regime of the
uncoupled two-component system is accessible, allowing
us to contrast the mixing and demixing dynamics with the
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coupled situation. As shown in the right-hand panel of
Fig. 1, the amplitude of the Rabi oscillations drops in the
miscible regime (top) and remains close to unity for im-
miscible parameters (bottom). These observations indicate
a reversal of the miscibility in the presence of a strong
linear coupling field.

Before we go into the quantitative discussion of
our observations, we provide more details about our
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FIG. 1 (color online). Rabi oscillations between two hyperfine
states of rubidium atoms in the miscible (upper row) and
immiscible (lower row) regime of the atomic states.
Counterintuitively the spatially averaged oscillation amplitude
is reduced in the miscible regime while it remains close to unity
for several hundred cycles in the immiscible case. The false color
images contrast the corresponding density distributions of the
two components with or without linear coupling indicating that
the reduction in amplitude is due to a spatially inhomogeneous
phase of the oscillations leading to a variation in the atomic
densities at the given time. The different transversal extension of
the atomic clouds results from state-selective imaging leading to
different times of flight of the two components. The lines
represent the corresponding amplitudes of numerically simulated
Rabi oscillations without free parameters.
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experimental system. We prepare a Bose-Einstein conden-
sate of about 4400 3"Rb atoms in the hyperfine state |1) =
|F = 1, mp = 1) of the ground state manifold confined in
an optical dipole trap. Resonant two-photon combined
radio frequency and microwave radiation coherently
couples the two hyperfine states |1) and [2) = |2, —1)
with a Rabi frequency x = 277 X 525 Hz at a detuning
of 271 X 200 kHz below the intermediate |2, 0) level. The
respective intra- and interspecies s-wave scattering lengths
of |1) and |2) in units of the Bohr radius are
(all, ano, (112) = (950, 1004, 977)(13 [8] leading to a
system close to the miscibility-immiscibiliy threshold
a%z = ayjay [16,17]. Utilizing a Feshbach resonance at
B =9.10 G [18,19] we tune a;, into the miscible (B =
9.17 G, a;, = 94ap) and immiscible regime (B = 9.03 G,
ap = 102ap) [10]. Three-body recombination and spin
relaxation losses in |2) result in a 1/e lifetime of 310 ms
for both magnetic field settings. The quasi-one-
dimensional confinement with trapping frequencies
(w,, @) =27 X (22,460) Hz allows for spatial demix-
ing dynamics only along the longitudinal trap axis. The
transverse degrees of freedom are frozen because the spin
healing length in the trap center £, = 1.2 um is compa-
rable to the transversal extension of the wave function of
approximately 1.1 wm. Consecutive absorption imaging
(delay of 780 ws) with high spatial resolution (1.1 pm)
allows for observation of the atomic density in both hyper-
fine states for each experimental realization.

For a quantitative analysis of the observed amplitude
characteristics of the Rabi oscillations, we theoretically
model the dynamics of the wave functions of our experi-
mental system, t; and ¢,, by two coupled Gross-
Pitaevskii equations including the linear coupling and
atom number loss [8,15,20]:
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where 2777 is Planck’s constant, V the external potential, m
the atomic mass, and )y the Rabi frequency. For the

interaction parameters g;; = % and loss coefficients
I';; of ¥Rb we use the values given in [8]. Since our
confinement is quasi-one-dimensional, we employ the non-
polynomial Schrodinger equation (NPSE) [21] instead of
the full three-dimensional description. We numerically
integrate the NPSE without free parameters to simulate
the full Rabi oscillation dynamics. In Fig. 2 we compare
the predicted amplitude with the experiment, where we
deduce this value by extracting the maximum observed
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FIG. 2 (color online). Quantitative comparison of numerical
simulations with experimental observations in the immiscible
(orange squares) and miscible (red circles) regimes of the atomic
states revealing the criticality of the dynamics. The dashed lines
display the result of numerical computations of the full Rabi
dynamics. The corresponding dressed state density profiles re-
veal symmetric demixing as displayed in the upper right inset.
The experimentally observed amplitude (solid circles and
squares) is only captured if the linear gradient of the Rabi
frequency (27 X 0.94 Hz/10 pum) is taken into account (solid
lines), indicating the criticality of the phenomenon. The gradient
has been independently characterized through a local measure-
ment of the Rabi frequency in a lattice as depicted in the left
inset. The associated symmetry breaking can be seen in the
density distribution of the dressed states (lower right inset).

amplitude in a time window of one Rabi period and aver-
aging over ten such cycles. The error bars correspond to
1 standard deviation statistical uncertainties of the mean
value. While we find very good agreement in the immis-
cible regime of the atomic states with the experimental
data, these simulations do not correctly capture the ob-
served amplitude reduction in the miscible regime.

We attribute the deviation of the NPSE predictions from
the experimental data in the miscible regime to a spatial
dependence of the linear coupling strength Qz(x). We
experimentally probe this by adding an optical standing
wave potential with a lattice period of 5.5 wm, which splits
the elongated condensate into eight independent lattice
sites. Measuring the local resonant Rabi frequency in
each site we find a gradient k = VQz(x) =27 X
0.94 Hz/10 pm along the longitudinal trap axis due to a
slightly inhomogeneous radio frequency field (inset of
Fig. 2). Using Ramsey spectroscopy in the lattice sites,
we independently checked that this spatial variation in
Qr(x) does not result from a local detuning, e.g., due to
magnetic field gradients, which amounts to VQ&(x) <
27 X 0.001 Hz/10 wm. When including this gradient «
in the simulations, very good agreement with our experi-
mental data is found (solid lines in Figs. 1 and 2).

In order to provide an intuitive explanation for our
observations, we introduce dressed states |+) = \%(Il} +

[2)) and |—) = 715(|1) — |2)). These states are eigenstates
of the linear coupling Hamiltonian with eigenenergies
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+ %Q - In this picture, resonant Rabi oscillations between
atomic states are the result of an interference between
equally populated dressed states. The amplitude of the
Rabi oscillations is thus given by the spatial overlap of
the dressed states [14].

The spatial dynamics of the dressed states results from
their effective interaction, as can be seen by rewriting the
equations of motion [Eq. (1)] in this basis. With that, the
linear coupling terms vanish and the atomic scattering
lengths ay, a», a;, are replaced by effective dressed state
scattering lengths a, . = a__ = %(a“ + ay, + 2a;,) and
a,_ = %(Cln + ay,) [13,14]. Thus, the slow dynamics of
the Rabi oscillation amplitude (see Fig. 1) can be under-
stood as mixing and demixing dynamics of the dressed
states. The condition for their stability against demixing
reads a’_ < a,,a__, which in the bare state basis corre-
sponds to aj, > %(a” + ay,). Thus, for equal intraspecies
scattering lengths a;; = a,,, which is a good approxima-
tion for 8’Rb, the miscibility conditions for bare and
dressed states are mutually exclusive—dressed states are
immiscible where bare states are miscible and vice versa.

Numerical simulations provide access to the bare state
wave functions allowing for direct calculation of the spatial
dressed state profiles. In the immiscible regime of the
dressed states, ignoring the gradient in the coupling
strength leads to spatially symmetric component separa-
tion (top right inset of Fig. 2). However, the gradient in the
linear coupling strength breaks the symmetry leading to
biased antisymmetric demixing (bottom right inset of
Fig. 2). This can be understood as a result of an additional
linear potential with opposite slopes for the two dressed
states, V. =V * %Kx, resulting in an equal but opposite
shift of their effective potential minima by *11 nm. The
qualitative change in the demixing dynamics of the dressed
states in response to a small perturbation of the unbiased
symmetric configuration demonstrates the criticality of this
phenomenon. In contrast, in the miscible regime of the
dressed states, the effect of the gradient in coupling
strength is small, as demonstrated by the persistent spatial
overlap of the dressed states during the time evolution.

In order to reconstruct the density profiles of the dressed
states from the experimental data, we analyze the Rabi
oscillations at + = 190 ms spatially resolved. Sinusoidally
fitting the local Rabi oscillations yields their local ampli-
tude A(x) and phase ¢(x). The relative phase of the dressed
states is directly given by the fitted phase ¢(x) of the Rabi
oscillations. Their amplitude profiles can be inferred using
A(x) = |sin[2a(x)]|, with « being the local mixing
angle of a superposition of dressed states cosa|+) +
sina exp(iQgt)|—). Because of the 77/2 periodicity of A
in « it is not possible to unambiguously assign the calcu-
lated amplitudes to the dressed states. However, using the
fact that a phase jump of 7 corresponds to a node in the
amplitude of one of the dressed states and assuming ap-
proximately equal populations of the two components, the
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FIG. 3 (color online). Reconstruction of dressed state profiles
at B=9.17 G (left-hand panel) and B = 9.03 G (right-hand
panel). (a) Spatially resolved Rabi oscillations rendered in false
color around 7 = 190 ms. In the dressed state immiscible regime
(left-hand panel) the oscillations in the center of the cloud are
out of phase with respect to its edges, while no spatial depen-
dence is found in the miscible case (right-hand panel). (b) A
sinusoidal fit to the local Rabi oscillations allows for the deter-
mination of their amplitude and phase [solid gray (red and
orange) lines]. (c) From these measurements we infer the density
profiles of the two dressed states in arbitrary units [solid gray
(blue and green) lines]. The results of the numerical calculations
are shown as dashed lines in (b) and (c).

probability amplitude profiles of the dressed states can be
reconstructed.

The result of the reconstruction for the immiscible
regime of dressed states (B = 9.17 G) is shown in the
left-hand panel of Fig. 3. The edge of the atomic cloud
oscillates out of phase with the center as can be seen in
Fig. 3(a), resulting from phase separation of dressed states
[Fig. 3(c)]. On the contrary, in the miscible regime of
dressed states (B = 9.03 G) neither amplitude nor phase
of the Rabi oscillations varies in space (right-hand panel of
Fig. 3). There, the spatial overlap of the inferred dressed
state profiles is only slightly decreased by the gradient in
coupling strength demonstrating the miscibility of the
dressed states and confirming that the gradient in the linear
coupling strength is only a small perturbation. The differ-
ence of = 4 um in the maxima of the dressed state den-
sities is increased compared to the shift of the effective
potentials due to the remaining repulsive interactions be-
tween the miscible dressed states. Because of the lower
atom density at the edge of the atomic cloud, the fit results
show increased noise. Using the procedure outlined above,
we reconstruct the temporally resolved demixing dynamics
shown in Fig. 4(a).
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FIG. 4 (color online). Time evolution of a superposition of
dressed states and of single dressed states in the immiscible
regime. (a) The difference of the dressed state densities recon-
structed from the Rabi oscillations using the method outlined in
Fig. 3 reveals the demixing dynamics of an initially overlapping
superposition of dressed states due to their effective interactions.
(b),(c) The time evolutions of initially prepared |+) and |—)
states are shown, confirming that they are stationary under the
action of the linear coupling Hamiltonian.

In order to analyze the stability of single dressed states,
we investigate their time evolution. Our system allows
their preparation by applying a /2 coupling pulse creat-
ing an equal superposition of atomic states, followed by a
nonadiabatic phase shift of the linear coupling field by + 7
(= %) corresponding to the generation of |+) (|—)) dressed
states. Note that in the context of weakly coupled two-
mode systems this corresponds to zero-amplitude plasma
(7r) oscillations [22]. During the following time evolution
we observe that the overlap of the atomic states remains
close to unity. Since no Rabi oscillations are observed, an
independent measurement of the phase is necessary. This
is achieved by employing an additional 77/2 coupling
pulse just before readout revealing a homogeneous
and temporally constant relative phase between the atomic
states. Combining these observations we confirm the
stability of single dressed states [Figs. 4(b) and 4(c)].
The same observations are made when performing the
experiment at B = 9.03 G where atomic states demix in
the absence of driving. Thus, we experimentally confirm
that linear coupling stabilizes an immiscible superposition
of atomic states as predicted in [15].

To conclude, we have experimentally investigated the
miscibility properties of dressed states by determining their
density profiles both in the miscible and the immiscible
regime. The experimental observations are in very good
agreement with numerical simulations without free pa-
rameters. Comparison with theoretical predictions reveals
the criticality of the demixing dynamics on the symmetry
of the system. In addition, we have experimentally

confirmed that linear coupling stabilizes immiscible two-
component gases. In this system one can realize equal
interspecies interactions in the strong driving limit, allow-
ing for the experimental exploration of analytically
solvable problems, for example, in the context of 1D
two-component Bose gases [23]. Preliminary analysis in-
dicates that the intermediate regime of weak linear cou-
pling, where neither the bare nor the dressed states form an
appropriate basis, presents a wealth of unexplored non-
linear states with a delicate bifurcation structure. In the
context of phase transitions, the demonstrated demixing
control has a direct application for tests of the Kibble-
Zurek mechanism leading to topological defect formation
as proposed in [24]. The suggested experiment requires a
miscible-immiscible transition with a gapped energy spec-
trum which is not available with standard Feshbach tuning.
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