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Energy positivity is established for a class of solutions to Einstein-aether theory and the IR limit of

Hořava gravity within a certain range of coupling parameters. The class consists of solutions where the

aether 4-vector is divergence-free on a spacelike surface to which it is orthogonal (which implies that the

surface is maximal). In particular, this result holds for spherically symmetric solutions at a moment of

time symmetry.
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INTRODUCTION.—It is difficult to modify general
relativity (GR) in a fashion that meets basic theoretical
requirements such as stability, energy positivity, and the
existence of a well-posed initial value formulation. Even in
the linearized theory one or more of these properties often
fails. Analyzing them in the full, nonlinear theory is of
course much more difficult, so much so that it is rarely
done.

In this Letter, we shall establish a fully nonlinear
positive-energy result for two closely related modifications
of GR whose properties and predictions have been exten-
sively studied over the past several years, ‘‘Einstein-aether
theory’’ and Hořava gravity. The first theory, called
‘‘ae-theory’’ for short, consists of a dynamical unit time-
like vector ‘‘aether’’ field ua coupled to Einstein gravity
[1,2] (for reviews see [3,4]). The vector can be thought of
as the 4-velocity of a preferred frame; it spontaneously
breaks local Lorentz symmetry since, being a unit vector, it
is everywhere nonzero in any solution, including flat space-
time. Hořava gravity [5] (for a review see [6]) can be
viewed as general relativity coupled to a preferred time
function T, restricted by invariance under reparametriza-
tions of T. Thus, it depends on T only via the unit normal

(timelike) vector field NT;a, with N ¼ ðgmnT;mT;nÞ�1=2.

Here we consider the so-called ‘‘nonprojectable’’ version
of that theory, in which the lapse function N is allowed to
be an arbitrary function of position, and we include in the
action all terms consistent with the symmetry of foliation
preserving diffeomorphisms (so that the theory is dynami-
cally well behaved [7]).

For both theories, we restrict our analysis to terms in the
Lagrangian with no more than two derivatives of the metric
or the vector field. Hořava gravity theory is then equivalent
to a version of ae-theory in which the aether is constrained
to be hypersurface orthogonal at the level of the action
[7,8]. (Every hypersurface-orthogonal solution of ae-
theory is a solution of Hořava gravity. The converse is

not true in general, but it does hold in spherical symmetry
for solutions with a regular center [9].) Moreover, the total
energy of asymptotically flat solutions of the two theories
is given by the same expressions in terms of the metric and
aether fields (for ae-theory see [10,11], for Hořava gravity
see [12,13]), as are the stress tensors [8]. A positive-energy
result for ae-theory therefore implies a similar result for
Hořava gravity. We thus focus the discussion on ae-theory.
The Lagrangian of ae-theory depends on four dimen-

sionless coupling constants c1;2;3;4. In the hypersurface-

orthogonal sector of the theory, only the combinations
c14 ¼ c1 þ c4, c13 ¼ c1 þ c3, and c2 enter. The coupling
constants of Hořava gravity can be expressed in terms of
these combinations [7,8]. Hyperbolicity, stability, and en-
ergy positivity of the linearized theory hold for certain
ranges of the coupling constants in ae-theory [10,14–16]
and Hořava gravity [7,9]. These ranges coincide in the two
theories for the spin-2 and spin-0 modes. (Ae-theory has an
additional spin-1 mode.) Here we establish a positive-
energy result for the full, nonlinear theory.
One might approach this problem by considering the

aether field as simply one more matter field and try to use
the usual results for the positivity of mass in general
relativity. However, the aether Lagrangian involves the
covariant derivative (as opposed to the exterior derivative,
which is all that is needed for minimally coupled scalar
fields or for electromagnetism). This leads to very different
behavior of the action when the metric is varied and, in
particular, to the violation of the dominant energy condi-
tion for the energy-momentum tensor. Since the dominant
energy condition is what is needed for both the Schoen-Yau
[17,18] and Witten [19,20] proofs of the positive-energy
theorem, these results do not apply to ae-theory, and one
might therefore expect that energy is not positive in ae-
theory. On the other hand, a spherically symmetric static
vacuum solution is known explicitly [21] which has posi-
tive energy despite having everywhere negative aether
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energy density, which suggests that there may be a general
positive-energy property.

The question we are addressing here is whether the total
energy M� of asymptotically flat solutions in ae-theory is
positive. (It turns out that this energy is not the same as the
ADM mass MADM that defines the total energy in general
relativity, although the ratioM�=MADM may be a universal
constant.) As we will show, this is indeed the case for
solutions where the vector field is hypersurface orthogonal
and where one of those hypersurfaces is asymptotically flat
and has vanishing trace of the extrinsic curvature (i.e., is
‘‘maximal’’). In particular, this result holds for spherically
symmetric solutions at a moment of time symmetry. The
possibility of generalizing this result is briefly discussed at
the end of the Letter.

The method of proof will be to exploit the result of
Schoen and Yau [17], which shows that the ADM mass
of an asymptotically flat spatial metric on an orientable
three manifold is non-negative if the Ricci scalar is
non-negative. Although the Ricci scalar of the physical
3-metric is not generally non-negative, we will find a
conformally related 3-metric with a positive Ricci scalar
and whose ADM mass is equal to M� of the original
spacetime.

EINSTEIN-AETHER THEORY.—The action for
Einstein-aether theory is the most general generally cova-
riant functional of the spacetime metric gab and aether field
ua involving no more than two derivatives (not including
total derivatives),

S ¼
Z ffiffiffiffiffiffiffi�g

p ðL� þ LmÞd4x; (1)

where

L� ¼ 1

16�G
½R� Kab

mnrau
mrbu

n þ �ðgabuaub þ 1Þ�
(2)

and Lm denotes the matter Lagrangian. Here R is the Ricci
scalar, Kab

mn is defined as

Kab
mn ¼ c1g

abgmn þ c2�
a
m�

b
n þ c3�

a
n�

b
m � c4u

aubgmn;

(3)

where the ci are dimensionless coupling constants, and � is
a Lagrange multiplier enforcing the unit timelike con-
straint on the aether. The convention used in this Letter
for the metric signature is ð� þþþÞ and the units are
chosen so that the speed of light defined by the metric gab
is unity.

The field equations from varying (1) with respect to gab,
ua, and � are given, respectively, by

Gab ¼ T�
ab þ 8�GTm

ab; (4)

raJ
a
b þ �ub þ c4aarbu

a ¼ 0; (5)

uaua ¼ �1: (6)

Here Gab is the Einstein tensor of the metric gab and T
m
ab is

the matter stress tensor. The quantities Jab, aa and the

aether stress energy T�
ab are given by

Jam ¼ Kab
mnrbu

n; (7)

aa ¼ ubrbua; (8)

T�
ab ¼ �uaub þ c4aaab � 1

2gabJ
c
drcu

d

þ c1ðraucrbu
c �rcuarcubÞ

þ rc½JcðaubÞ þ ucJðabÞ � Jða
cubÞ�: (9)

In the weak-field, slow-motion limit, ae-theory reduces to
Newtonian gravity with a value of Newton’s constant
GN related to the parameter G in the action (1) by GN ¼
Gð1� c14=2Þ�1 [22]. Note that a sensible Newtonian limit
requires that c14 < 2.
The total energy of an asymptotically flat solution,

defined in the asymptotic aether rest frame, is given by

M� ¼ MADM � c14
8�G

Z
1
raaa; (10)

where MADM is the usual ADM mass (16), the integral is
over a two-sphere at infinity, and ra is a unit vector in the
radial direction. (The total energy was first found by Eling
[10] using pseudotensor methods, and then by Foster [11]
using Wald’s Noether charge method [23,24]. It is written
in the above form in [11].) At least in the weak-field, slow-
motion limit, we have GNM� ¼ GMADM. That is, the
difference between M� and MADM is accounted for by
the difference between GN and G. We suspect that the
equality GNM� ¼ GMADM holds in general (i.e., not just
in the weak-field slow-motion limit) and therefore that the
positivity of M� is equivalent to the positivity of MADM

when c14 < 2. However, for the purposes of this Letter we
will only address the question of the positivity of M�.
HYPERSURFACE-ORTHOGONAL CASE.—We con-

sider here only solutions where ua is hypersurface orthogo-
nal. This is always the case in spherical symmetry, but
more generally it is a bona fide restriction. On an asymp-
totically flat slice orthogonal to ua, the spatial metric hab
and extrinsic curvature Kab are given by

hab ¼ gab þ uaub; (11)

Kab ¼ �ha
crcub: (12)

The trace of the extrinsic curvature is given by

K ¼ �rau
a: (13)

If ua is orthogonal to surfaces of constant t for some
function t, then ua ¼ Nrat for some ‘‘lapse’’ function
N. Crucial for our purposes here is the fact that in this
case the acceleration vector aa ¼ ubrbua is equal to a
spatial gradient,
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aa ¼ Da lnN; (14)

where Da is the spatial derivative operator.
Using this expression for the acceleration of the aether,

the total energy (10) becomes

M� ¼ MADM � c14
8�G

Z
1
ri@iN: (15)

The energy takes this simple form because it is defined and
expressed in the asymptotic aether rest frame, and we have
chosen the t coordinate so that N ! 1 at infinity. Note that
the second term in this expression for the aether mass is
similar to the change of the ADM mass under a conformal
transformation. Consider a conformally transformed met-

ric ~hab ¼ �2hab where � ! 1 at infinity. Since the ADM
mass is given by

MADM ¼ 1

16�G

Z
1
rið@jhji � @ihjjÞ; (16)

it follows that under a conformal transformation we have

~M ADM ¼ MADM � 1

4�G

Z
1
ri@i�: (17)

Therefore, M� is equal to the ADM mass of a conformally
transformed metric,

M� ¼ ~MADM; ~hab ¼ Nc14hab; (18)

using the conformal factor � ¼ Nc14=2. The question of
whether M� is positive thus becomes that of whether
~MADM is positive.
As in general relativity, the uu component of the

Einstein equation (4) turns out to be an initial value con-
straint equation in the present setting where ua is orthogo-
nal to the spatial surface. (This is not a priori obvious,
since the aether stress tensor (9) contains second time
derivatives. The spherical case was treated in detail in
[25] and a general argument is given in [26].) This equation
reads

ð3ÞRþ K2 � KabKab ¼ 2ðT�
ab þ 8�GTm

abÞuaub; (19)

where ð3ÞR is the scalar curvature of the spatial metric.
Using the fact that ua is orthogonal to the surface, the
uu component of the aether stress tensor (9) may be
evaluated as

2T�
abu

aub ¼ c14ð2Daa
a þ aaa

aÞ � c2K
2 � c13KabK

ab;

(20)

where Da is the covariant derivative with respect to the
spatial metric. On substituting Eq. (20) into Eq. (19) one
finds

ð3ÞR ¼ 16�G�þ c14ð2Daa
a þ aaa

aÞ
þ ð1� c13ÞKabK

ab � ð1þ c2ÞK2; (21)

where � ¼ Tm
abu

aub is the matter energy density.

POSITIVE-ENERGY THEOREM.—Now if � � 0 and
K ¼ 0, then in ordinary general relativity (c1;2;3;4 ¼ 0) this

implies ð3ÞR � 0, so the theorem of Schoen and Yau (SY)
[17] implies that the ADM energy is positive. In Einstein-
aether theory, provided c14 and 1� c13 are positive, the
aaa

a and KabK
ab terms contribute positively, but the term

Daa
a has indefinite sign. Thus, we cannot expect a definite

sign for the ADMmass. However, recall that it is the aether
mass M� (15) that is the physical mass of the spacetime,
and M� is equal to the ADM mass of a conformally trans-
formed metric (18).
Remarkably, precisely the same conformal transforma-

tion that yields M� ¼ ~MADM removes the indefinite term
Daa

a of (21). To see this, note that the Ricci scalar of
~hab ¼ �2hab is related to ð3ÞR by

ð3Þ ~R ¼ ��2½ð3ÞR� 4DaDa ln�� 2ðDa ln�ÞðDa ln�Þ�:
(22)

With the conformal factor � ¼ Nc14=2 we have Da ln� ¼
ðc14=2Þaa, so (21) and (22) together yield

ð3Þ ~R ¼ N�c14½16�G�þ c14ð1� c14=2Þaaaa
þ ð1� c13ÞKabK

ab � ð1þ c2ÞK2�: (23)

The result of SY thus implies that the ADM energy of
~hab is positive, and therefore the aether mass M� of hab
is positive, provided � � 0, K ¼ 0, 0 � c14 � 2, and
c13 � 1.
These inequalities on c1;2;3;4 are required by the stability

and positive energy of the linearized theory. What we have
found here is that they also suffice to imply the positive
energy of hypersurface-orthogonal configurations on
maximal slices of the fully nonlinear theory.
The SY theorem holds when the spatial manifold has

any number of asymptotically flat ‘‘ends.’’ This provides a
way to extend the result to the case when the spatial metric
at a moment of time symmetry has a minimal surface with
a singularity inside. One can just smoothly join a second
copy of the space to itself along the minimal surface, thus
obtaining a space, without the original interior of the
minimal surface, to which the theorem applies for each
end. Thus, the mass of the spherical static vacuum solution,
which possesses a minimal 2-sphere with a singularity
inside, must be positive, as indeed it was found to be by
explicit construction [21]. This is an instructive example,
since the aether energy density is negative everywhere in
the solution.
We now consider how the above result can be general-

ized. One such generalization is to remove the condition
that K ¼ 0. For general relativity this was done by Schoen
and Yau [18] using a technique that essentially reduced the
problem to one covered by their first proof (but required
the dominant energy condition, which is stronger than the
condition � > 0). We expect that the method of [18] can
also be used for ae-theory and therefore that the condition
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that the slice be maximal can be removed. If so, the
theorem could be extended to cover, in particular, time
dependent spherical solutions with R3 topology, and pos-
sibly spherical black holes [27,28].

More generally, one might hope to remove the condition
that the aether vector field is hypersurface orthogonal (this
condition always holds in Hořava gravity). Since the posi-
tive mass theorem is essentially a property of the constraint
equations, to find a general positive mass theorem one
would have to examine the general constraint equations
in ae-theory. These equations were first written in [29]
using a result from [30] (see also [26] for a different
derivation). They are complicated, so it might be better
to start with a simple subcase, such as that of a moment of
time symmetry, to see whether a positive-energy result
could be obtained there.

Finally, it is worth emphasizing that a key step in our
proof of energy positivity was to express the total energy
for ae-theory in terms of the ADM mass of a particular
conformally related spatial metric whose Ricci scalar is
positive under the conditions of the theorem. It is an
unexpected fact that, in the hypersurface-orthogonal case,
the same conformal transformation that makes the energy
M� equal to the ADM mass ~MADM removes the indefinite
sign divergence term in the Ricci scalar. This may be a hint
that a similar conformal transformation could be used to
generalize the result.
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