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We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates

of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms

inductively coupled to a transmission line resonator. We show a universal set of quantum gates by using

multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic

‘‘anisotropic’’ nature of noise sources for fluxonium artificial atoms. Through a master equation treatment

with colored noise andmany-level dynamics, we prove that, for a general class of anisotropic noise sources,

the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in

an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic ‘‘cat’’ state.
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The study of quantum decoherence is believed to be
crucial in order to understand the transition from the micro-
scopic quantum world to the macroscopic classical one.
Moreover, a control and limitation of decoherence is es-
sential towards the realization of a robust, scalable quan-
tum computer. The study of cavity QED systems in atomic
physics [1] has led to spectacular fundamental investiga-
tions of nonunitary evolution due to decoherence mecha-
nisms. In particular, it has been possible to observe the
fragility of states of the form j�cati ¼ 1ffiffi

2
p fj�iphotjgiat þ

j�ei�iphotjeiatg (usually dubbed ‘‘cat states’’ [1]), where

j�iphot is a coherent photon state with a large mean photon

number j�j2 � 1, j�ei�iphot is another coherent state with
a phase difference �, while jgiat (jeiat) is the ground
(excited) state of a two-level atom [2,3]. These states
have been prepared in a cavity QED system well described
by the Jaynes-Cummings model, where the ground state is
j0iphotjgiat, i.e., the vacuum of photons times the atomic

ground state.
Recently, a growing interest has been generated by the so-

called ultrastrong coupling regime of cavity (circuit) QED,
both theoretically [4–13] and experimentally [14–18]. Such
a regime is achieved when the vacuum Rabi frequency�0,
which quantifies the coupling between one photon and one
elementary matter excitation, is comparable or larger than
the cavity (resonator) photon frequency !cav. In such a
regime, the Jaynes-Cummings model based on the rotating
wave approximation (valid for small ratio�0=!cav) breaks
down. In particular, the ground state of the system is no
longer the standard vacuum: recently, it was shown [8,9] that
in the limit of very large coupling the ground state can
become quasidegenerate with the entangled structure:

j�Gi ’ 1ffiffiffi
2

p ðj�iphot�N
j¼1jþij þ ð�1ÞNj � �iphot�N

j¼1j�ijÞ;

(1)

where N is the number of atoms embedded in the cavity
resonator, j�iphot is a coherent state for the photonic field

which satisfies j�j � ffiffiffiffi
N

p
�0=!cav, and j�ij are pseudospin

polarized states for the jth artificial atom, which are defined
in the following. For each two-level system fjeij; jgijg one
can introduce the Pauli operators �̂j

x ¼ jeijhgjj þ jgijhejj,
�̂j

y ¼ iðjgijhejj � jeijhgjjÞ, and �̂j
z ¼ ð2jeijhejj � 1Þ. With

a light-matter coupling Hamiltonian of the formHcoupling ¼P
N
j¼1 �jâ�̂

j
x þ H:c: (�j being the local coupling strength

and â the photonic bosonic annihilation operator), j�ij ¼
1ffiffi
2

p ðjeij � jgijÞ are the eigenstates of �̂j
x. Interestingly, the

(orthogonal) first excited state has a similar form:

j�Ei ’ 1ffiffiffi
2

p ðj�iphot�N
j¼1jþij � ð�1ÞNj � �iphot�N

j¼1j�ijÞ:

(2)

In this Letter, we show how j�Gi and j�Ei surprisingly can
form a robust qubit, whose decoherence can diminish while
increasing the size of the corresponding photonic cat states
(see Fig. 1). Moreover, we also provide a universal set of
quantum computation gates and demonstrate via a thorough
master equation treatment the fidelity enhancement in a
regime of ultrastrong coupling.
The energy difference � between the two considered

states j�Gi and j�Ei diminishes exponentially [8,9]

with the vacuum Rabi coupling, namely, ��
!eg expð�2

�2
0

!2
cav
NÞ, where !eg is the frequency of the

single atom two-level transition (set to be equal to the
cavity mode frequency). Either in the ultrastrong
(�0=!eg ! þ1) or the thermodynamic (N ! þ1) limit,

the two states become degenerate. In the ultrastrong cou-
pling limit, the other excited states are much higher in
energy, separated by a frequency gap ��!eg � �.

Importantly, these interesting features cannot be
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obtained in every ultrastrong light-matter coupled system.
In particular, using the Pauli matrix language, the direction
of the bare atomic Hamiltonian must be orthogonal to the
one of the light-matter interaction Hamiltonian [9]. This is
the case in the following spin-boson Hamiltonian:

Ĥ=@¼!cavâ
yâþ!eg

2

XN
j¼1

�̂j
zþ

XN
j¼1

i
�0ffiffiffiffi
N

p ðâ� âyÞ�̂j
x: (3)

In this Letter, we limit our description to a single bosonic
mode and a uniform light-matter coupling, but all the
following results may be generalized to several and spa-
tially nonuniform modes [8].

It has also been shown recently that in the ultrastrong
coupling regime the quasidegeneracy of the states j�Gi
and j�Ei is robust with respect to a local and static

perturbation of the type H
pert
y;z ¼ P

N
j¼1 hy;j�̂y;j þ hz;j�̂z;j,

where hy;j and hz;j are random perturbation amplitudes [8].

The reason is that in the subspace fj�Gi; j�Eig such per-
turbation couples (at the Nth order) coherent states
of opposite phase j � �i and j�i. The effect of the pertur-
bation is proportional to the overlap h��j�i ¼
expð�2j�j2Þ � expð�2

�2
0

!2
cav
NÞ. Indeed, the stronger the

coupling �0 or the larger the number of artificial atoms
N, the larger j�j2, the size of the photonic cat states j�Gi
and j�Ei. Importantly, the protection is not complete [19],
because these states are not robust with respect to noise

terms like Hpert
x ¼ PN

j¼1 hx;j�̂x;j and Hpert
â ¼ haâþ h�aây,

namely, the noise in the direction of the light-matter cou-
pling and the noise associated to the resonator field.

However, if in a superconducting system, perturbations

like Hpert
y;z happen to be the dominant ones, the lifetime

and the fidelity of the quantum operation involving the
states j�Gi and j�Ei can be dramatically improved by
increasing �0=!eg and/or N.

In fact, among the different flux Josephson atoms
[17,18,20,21], this noise anisotropy appears to be realistic
at least for a fluxonium [20]. Under conditions detailed in
[20], its Hamiltonian can be written as

HF ¼ 4ECJ
N̂2

J þ ELJ

ð’̂JÞ2
2

� EJ cosð’̂J þ�extÞ: (4)

The Hamiltonian parameters are subject to noise fluctua-
tions: �ext ¼ �þ��ext with ��ext some flux noise (in
units of �0 ¼ @=2e), EJ ¼ EJ þ �EJ with �EJ ¼
�I0=�0 proportional to the critical current fluctuation,

N̂J ¼ N̂J þ �N0, �N0 being the charge offset fluctuation.
One can also introduce some capacitive and inductive
noise ECJ

¼ ECJ
þ�ECJ

and ELJ
¼ ELJ

þ �ELJ
. When

the fluctuation sources are off, the first two eigenstates
of the fluxonium are very well isolated from the higher
states provided that EJ � ELJ

and EJ � ECJ
. Then, the

Hamiltonian (4) reads ĤF ’ @ð!eg=2Þ�̂z in the basis of the

two first eigenstates which are symmetric and antisymmet-
ric superpositions of clockwise and counterclockwise per-
sistent current states. On the same basis ’̂J ’ �’01�̂x and

N̂J ’ !eg

8EC
’01�̂y (where ’01 ’ 3). The fluctuations produce

(at the first order) the perturbation:

ĤF;pert=@ ’ ��ext sinð’01ÞðEJ=@Þ�̂x þ�N0’01!eg�̂y

þ
�
@!eg

@EJ

EJ

�I0
I0

þ @!eg

@ECJ

ECJ

�ECJ

ECJ

þ @!eg

@EL

EL

�EL

EL

�
�̂z: (5)

The spectral density of the flux noise is typically S1=2��ext
�

10�6=
ffiffiffiffiffiffiffi
Hz

p
[22,23]. The critical current noise �I0=I0 ¼

�EJ=EJ, which is also believed to follow a 1=f law
[24,25], has recently been measured [26] in a fluxonium:

S1=2�EJ=EJ
� 3� 10�5=

ffiffiffiffiffiffiffi
Hz

p
. It proves that the dissipation

due to the �̂z channel is much larger than the �̂x channel
contribution. To study the behavior of the qubit
fj�Gi; j�Eig in the presence of dissipation, we used the
master equation [27]:

d�̂

dt
¼ 1

i@
½Ĥ;�̂�þ X

r¼rv;rf

Ûr�̂Ŝrþ Ŝr�̂Û
y
r � ŜrÛr�̂� �̂Ûy

r Ŝr

þXN
j¼1

X
m¼xj;yj;zj

Ûm�̂Ŝmþ Ŝm�̂Û
y
m� ŜmÛm�̂� �̂Ûy

mŜm;

(6)

FIG. 1 (color online). Description of the considered system.
The building block is a superconducting transmission line reso-
nator embedding N Josephson atoms (N ¼ 2 in the sketch here).
By choosing judiciously the type of artificial atom (the depicted
circuit represents fluxonium atoms inductively coupled to the
resonator), the first two ground levels of the resonator are
entangled states (j�i is a photon coherent state, j�i is a
Josephson junction state ‘‘polarized’’ along the pseudospin x
direction). One resonator represents a single qubit: a register of
M qubits is given by M resonators.
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where �̂ is the density matrix, Ĥ refers to Hamiltonian (3),

and where the ‘‘jump’’ operators are Ŝrv ¼ âþ ây, Ŝrf ¼
iðâ� âyÞ, Ŝxj ¼ �̂j

x, Ŝyj ¼ �̂j
y, Ŝzj ¼ �̂j

z. Moreover [28],

Ûk ¼
Z 1

0
�kð	Þe�ði=@ÞĤ	Ŝke

ði=@ÞĤ	d	;

�kð	Þ ¼
Z 1

�1
�kð!Þfnkð!Þei!	 þ ½nkð!Þ þ 1�e�i!	gd!;

(7)

for k ¼ rv; rf or k ¼ xj; yj; zj 8 j ¼ 1; . . . ; N.

Here we consider the zero temperature limit [29], where
the spectral functions �kð!Þ must vanish for !< 0 be-
cause they are proportional to the density of states (of the
baths) at energy @!. For the sake of simplicity, we have set
�kð!Þ ¼ �k for ! 2 ½0;!c� and �kð!Þ ¼ 0 elsewhere
8 k, with !c an upper cutoff which is consistent with
decreasing spectral noise. Finally, one must include many
excited states in the master equation treatment. To inves-
tigate the robustness of the coherence between the two
quasidegenerate vacua j�Gi and j�Ei, we have studied
the nonunitary dynamics of the initially prepared pure state
j�0i ¼ cosð
Þj�Ei þ sinð
Þei�j�Gi in the presence of
anisotropic Josephson dissipation rates �y;�z � �x and

for several cavity loss rates �r=!eg ¼ �rv=!eg ¼ �rf=!eg

(see caption of Fig. 2). Our simulations plotted in Fig. 2
prove that the coherence time increases while increasing
the normalized vacuum Rabi frequency�0=!eg. Indeed, if

the dominant dissipation channels are along the y and z
directions, their effect decreases as expð�2j�j2Þ, where
� ¼ ffiffiffiffi

N
p

�0=!cav. Hence, the coherence time is enhanced
exponentially before reaching a saturation value given by
�r;�x and eventually decreasing with the usual power law
of cat states. The location of the coherence time peaks with

respect to the photonic amplitude � ¼ ffiffiffiffi
N

p
�0=!eg is al-

most independent of the number of atoms N (see top right-
hand panel of Fig. 2), indicating that � is the relevant
dimensionless parameter for the protection. Depending
on �r and �x (see bottom right-hand panel of Fig. 2), the
maximum coherence times have a different behavior ver-
sus N. For smaller values of �x, the protection increases
monotonically with N 	 2 (we have been able to calculate
up to N ¼ 5). For larger values of �x instead the maximum
of the coherence time is achieved for N ¼ 1. Finally, since
the number of photons hni of j�Gi and j�Ei increases like
�2

0

!2
cav
N (see Fig. 2), we conclude that there is a regimewhere

the larger the number of photons in j�Gi and j�Ei, the
stronger their robustness against decoherence contrary to
the usual cavity QED cat states [1], obtained when
�0=!eg 
 1. Indeed, it is well known [1–3,30] that the

coherence time of those standard cat states decreases
monotonically while increasing their size.

Now, we show how to obtain a universal set of gates for
quantum computation [31] using the two states j�Gi and

j�Ei as the computational basis for the qubit and we will
study the fidelity of such quantum operations. One begins

by showing how to get the dynamical gate e�i
x�̂x in the

basis j�Gi and j�Ei, where �̂x ¼ j�Gih�Ej þ j�Eih�Gj
is the x-direction Pauli matrix associated with this (collec-
tive) vacuum qubit. To do so, one can add a coupling
between the flux of one Josephson atom embedded into
the resonator (for instance the first atom) and an external,
classical, and tunable magnetic field�sðtÞ. This leads to an
additional Hamiltonian term of the type M�sðtÞ’̂1

j ¼
CðtÞ�̂1

x, where ’̂
1
j is the flux across the Josephson junction

of the first artificial atom. Such perturbation lifts the de-
generacy of the fundamental subspace so that the new two
first eigenstates are jþij þ �i and j�ij � �i with a split-
ting �ðtÞ ¼ 2CðtÞ and where we have replaced �N

j¼1j�ij
by j�i to simplify the notation. By adiabatically shaping
the time dependence of CðtÞ, it is possible to create a

dynamical gate e�i
x�̂x with 
x ¼
R
T
0 CðtÞdt with ½0;T�

the gate time interval.
Now, we show how to get a second single-qubit gate,

namely, e�i
z�̂z , where �̂z ¼ 2j�Eih�Ej � 1. j�Gi and
j�Ei have an energy splitting � exponentially decreasing
as a function of�0. By modulating in time�0, one gets the
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FIG. 2 (color online). Coherence time in units of 1=!eg calcu-
lated via the master equation (6) for !eg ¼ !cav and with the

initial state j�0i ¼ cosð
Þj�Ei þ sinð
Þei�j�Gi. Results are
averaged over the possible initial values for 
 and �. Left-
hand panel: Coherence time versus the normalized vacuum
Rabi frequency �0=!eg for one atom (N ¼ 1) with Josephson

loss rates f�x;�y;�zg ¼ !egf10�6; 10�3; 10�3g. The different

cavity loss rates, �r=!eg ¼ 10�6; 10�7; 0, correspond [1] to

different quality factors Q ¼ !eg=ð4��rÞ ’ 105; 106;1.

Inset: The number of photons hni ¼ j�j2 ¼ hayai is plotted
versus �0=!eg for N ¼ 1. Top right-hand panel: Coherence

time for N ¼ 1, 2, and 3 atoms for �r=!eg ¼ 10�6 and with a

lower anisotropy in the atomic loss rates: f�x;�y;�zg ¼
!egf10�5; 10�3; 10�3g as a function of the photonic amplitude

� ¼ ffiffiffiffi
N

p
�0=!eg. Bottom right-hand panel: Maximum coher-

ence time as a function of the number of atoms N for different
values of �x, hence for different noise anisotropy.
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desired quantum gate. Acting adiabatically, the rotation
angle will be 
z ¼

R
T
0 �ðtÞdt ¼

R
T
0 �½�0ðtÞ�dt. Even with-

out optimizing the temporal shape of t ! �0ðtÞ, excellent
fidelities can be reached. For instance, for the Z-Pauli gate
(corresponding to 
z ¼ �=2), with one atom and for a
linear back and forth between�0=!eg ¼ 2 and�0=!eg ¼
1:3, fidelity 	 99:9% is obtained for a typical time
T � 300=!eg in the presence of realistic dissipation. In

practice, to modulate in situ �0ðtÞ, one can use an inter-
mediate loop between the resonator and the artificial atom
with a tunable magnetic flux through it [8,11].

In order to get a complete set of quantum operations, one
needs to perform a 2-qubit control gate. Here, we will
describe how to obtain the conditional quantum gate

e�i
x12 �̂x1
��̂x2 in the four-dimensional basis ffj�Gi1;

j�Ei1g� fj�Gi2; j�Ei2gg¼ f 1ffiffi
2

p ðjþijþ�i1�j�ij��i1Þ�
1ffiffi
2

p ðjþijþ�i2�j�ij��i2Þg, where 1 (2) stands for the

resonator number. For our goal, one way is provided by a
direct magnetic mutual coupling [32] M12ðtÞ’̂1

j ’̂
2
j , be-

tween two fluxonium atoms (one in each resonator), giving

the Hamiltonian Ĥ12 ¼ Ĥ1 þ Ĥ2 þ C12ðtÞ�̂1
x;1�̂

1
x;2, where

Ĥ1 (Ĥ2) stands for the spin-boson Hamiltonian (3) for the
resonator 1 (2), while �̂1

x;1 (�̂1
x;2) stands for the x-Pauli

matrix acting on the first two levels system of the resonator
1 (2). Applying such a perturbation will partially lift the
4 times degeneracy of the fundamental subspace so that the

two states (jþij þ �i1 � jþij þ �i2 and j�ij � �i1 �
j�ij � �i2) will have a different energy than the states
(jþij þ �i1 � j�ij � �i2 and j�ij � �i1 � jþij þ �i2).
Fidelity of that operation for 
x12 ¼ �=2 is given in the

right-hand panel of Fig. 3 in the presence of dissipation,
showing again the enhancement for increasing values of
the normalized vacuum Rabi frequency. Other protocols
for the practical coupling between the two resonators could
be envisaged [33–35]. Concerning the readout of our qubit,
this can be done by a projective measurement on the states
jþij þ �i and j�ij � �i: the flux across the Josephson
junctions is polarized and can be in principle measured via
the surrounding quasistatic magnetic field.
In conclusion, we have shown that it is possible to

considerably enhance the coherence times of a qubit given
by the first two eigenstates of a circuit-QED system in the
ultrastrong coupling regime: such states are entangled
states of photons and polarized Josephson atomic states,
which are robust with respect to a general class of ‘‘aniso-
tropic’’ environment. In our proposal, the resonator is used
to protect quantum information [36,37], contrary to the
approach [38–40] where it acts as a bus joining several
embedded Josephson qubits. The present work shows that
the qualitative modification of the quantum ground state in
ultrastrong coupling circuit QED can have a significant
impact on the decoherence and manipulation of quantum
states in multiple resonators.
We would like to thank M.H. Devoret for a critical

reading of the manuscript and useful discussions. C. C. is
a member of Institut Universitaire de France (IUF).
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