Comment on ''Quantum Mechanics in Metric Space: Wave Functions and their Densities''

In a recent Letter, D'Amico et al. [\[1](#page-0-0)] report a positive correlation between two distances defined for quantummechanical N-particle systems, one among wave functions, the other among their particle densities, thereby offering a very interesting new perspective on density functional theory. Given states $|1\rangle$ and $|2\rangle$ and their corresponding real and positive-defined particle densities $\rho_1(\mathbf{x})$ and $\rho_2(\mathbf{x})$ (x indicates position and spin), the distance between states is defined [[2\]](#page-0-1) as ffi

$$
D(1|2) = \sqrt{\langle 1|1 \rangle + \langle 2|2 \rangle - 2|\langle 1|2 \rangle|}
$$
 (1)

and the one between their densities they define as

$$
D_{\rho}(1|2) = \int |\rho_1(\mathbf{x}) - \rho_2(\mathbf{x})| d\mathbf{x}.
$$
 (2)

If normalizing densities to N and states to \sqrt{N} , the metric spaces arising through these distances are argued to display an onionlike structure, the different onion shells corresponding to the different values of N , growing from $N = 0$ at the center (see Fig. 1 in [\[1\]](#page-0-0)).

Within a given N shell the mentioned correlation is less general than apparent in Ref. [\[1\]](#page-0-0). For $N = 1$ any two plane waves are maximally distant wave-functions and have minimally distant densities. For large N, the dimension of configuration space makes the largest distances exponentially more likely for wave functions than for densities. The D_{ρ} vs D curves would thus tend to a step function, as indeed observed in Fig. 2(c) of [\[1\]](#page-0-0) for ground states of model Hamiltonians [\[3\]](#page-0-2) with up to $N = 8$. If a metric could be defined from $D^{1/N}$ it might recover a significant correlation with D_{ρ} for larger N. As it stands it should be useful for few-particle systems.

For different values of N the case rests on two points: (i) If defining vacuum at the onion center as $\Psi = 0$ and $\rho(\mathbf{x}) = 0$ in each metric space, the distance from any N $\rho(\mathbf{x}) = 0$ in each metric space, the distance from any N state to the center is \sqrt{N} , and N for its density. (ii) The "minimum distance" between states with different N val-"minimum distance" between states with different N values is *defined* as $|\sqrt{N} - \sqrt{N'}|$, and as $|N - N'|$ for the densities. We show here that the intershell aspect of the onion paradigm is valid for the density (actually a stronger case than originally stated), while it is not so for Fock space. Starting with the density, the fact that $\rho(\mathbf{x}) = 0$ for $N = 0$ is easy to validate, since $\rho(\mathbf{x})$ is a function defined on the same x space for any N , trivially extending to $\rho(\mathbf{x}) = 0$ (e.g. $\rho(\mathbf{x}) = \langle \Psi | \psi^{\dagger}(\mathbf{x}) \psi(\mathbf{x}) | \Psi \rangle$, with the ψ 's as the relevant field operators, and $|\Psi\rangle$ any N-particle state, including the vacuum state).

The second supporting argument as stated in Ref. [\[1\]](#page-0-0) is weak, since the minimal distance for densities in different N shells is defined irrespective of Eq. (2) (2) (2) . It is easy to see, however, that the minimal distance for densities for N and

M particles is $|N - M|$ as a direct consequence of the original definition in Eq. [\(2\)](#page-0-3) extended to variable N. Taking $N > M$, the minimal distance between a N density and a M density, $D_{\rho}(1^N|2^M)$, happens when $\rho_1^N(\mathbf{x}) \geq$ $\rho_2^M(\mathbf{x})$ everywhere, in which case $D_\rho(1^N|2^M) = N - M$ exactly (the argument also holds for $N = M$, for which the condition $\rho_1^N(\mathbf{x}) \ge \rho_2^M(\mathbf{x})$, \forall **x** is only fulfilled if both densities are equal everywhere). The density onion case is further supported by the authors' argument that maximum distance occurs for locally nonoverlapping densities $(\rho_1(\mathbf{x})\rho_2(\mathbf{x})=0, \forall \mathbf{x})$. It generalizes trivially to $N \neq M$, giving $D_{\rho}(1^N|2^M) = N + M$, consistent with the onion. D_{ρ} varies smoothly from $|N - M|$ to $N + M$.

Now for interstate distances [Eq. ([1\)](#page-0-4)] among different shells. If considering states with well defined particle shells. If considering states with well defined particle number, Eq. ([1](#page-0-4)) yields $D(1^N|2^M) = \sqrt{N+M}$. This is actually consistent with the onion picture as the maximum distance between states with N and M particles: In the hemispheric picture of Fig. 1(b) of Ref. [[1\]](#page-0-0) the maximum distance is that between a state in the pole and a state in the distance is that between a state in the pole and a state in the equator, which, for spheres of radii \sqrt{N} and \sqrt{M} , gives equator, which, for spheres of radii \sqrt{N} and \sqrt{M} , gives precisely $\sqrt{N + M}$. It furthermore confirms the radius of precisely $\sqrt{N} + M$. It furthermore confirms the radius of the sphere to \sqrt{N} , by taking $M = 0$. The problem is that $\sqrt{N + M}$ is the distance for any two states of N and M particles, very much against the onion-shell paradigm, and in contradiction with their definition of a minimal distance in contradiction with their definition of a minimal distance
of $|\sqrt{N} - \sqrt{M}|$. Alternative definitions to Eq. [\(1\)](#page-0-4) could be built by substituting $|\langle 1|2 \rangle|$ by a (suitably normalized) expression like (for $N_1 = N_2 + 1$):

$$
\min_{\phi} |\langle 1|c_{\phi}^{\dagger}|2\rangle|, \quad \text{with} \quad c_{\phi}^{\dagger} = \int d\mathbf{x} \phi(\mathbf{x}) \psi^{\dagger}, \quad (3)
$$

for any 1-particle wave function $\phi(\mathbf{x})$. D then takes values for any 1-particle wave function $\phi(\mathbf{x})$. D then takes values
between $\sqrt{|N_1 - N_2|}$ and $\sqrt{|N_1 + N_2|}$. As it stands, however, the wave-function metric based on Eq. [\(1\)](#page-0-4) is inconsistent with the onion geometry.

Emilio Artacho Department of Earth Sciences University of Cambridge Downing Street, Cambridge CB2 3EQ, United Kingdom

Received 25 February 2011; published 27 October 2011 DOI: [10.1103/PhysRevLett.107.188901](http://dx.doi.org/10.1103/PhysRevLett.107.188901)

- PACS numbers: 03.65. - w, 03.67. - a, 31.15.ec, 71.15. Mb
	- [1] I. D'Amico, J. P. Coe, V. V. França, and K. Capelle, [Phys.](http://dx.doi.org/10.1103/PhysRevLett.106.050401) Rev. Lett. 106[, 050401 \(2011\).](http://dx.doi.org/10.1103/PhysRevLett.106.050401)
	- [2] L. Longpré and V. Kreinovich, [Int. J. Theor. Phys.](http://dx.doi.org/10.1007/s10773-007-9505-0) 47, 814 [\(2007\)](http://dx.doi.org/10.1007/s10773-007-9505-0).
	- [3] The set of ground states is incorrectly said not to be a Hilbert space: any $|\Psi\rangle$ in a Hilbert space is the ground state of some operator (take $\hat{H} = -|\Psi\rangle\langle\Psi|$). The set of ground states of an arbitrary set of Hamiltonians conforms to the arguments of the authors.