
Comment on ‘‘Quantum Mechanics in Metric Space:
Wave Functions and their Densities’’

In a recent Letter, D’Amico et al. [1] report a positive
correlation between two distances defined for quantum-
mechanical N-particle systems, one among wave func-
tions, the other among their particle densities, thereby
offering a very interesting new perspective on density
functional theory. Given states j1i and j2i and their corre-
sponding real and positive-defined particle densities �1ðxÞ
and �2ðxÞ (x indicates position and spin), the distance
between states is defined [2] as

Dð1j2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h1j1i þ h2j2i � 2jh1j2ij
q

(1)

and the one between their densities they define as

D�ð1j2Þ ¼
Z

j�1ðxÞ � �2ðxÞjdx: (2)

If normalizing densities to N and states to
ffiffiffiffi

N
p

, the metric
spaces arising through these distances are argued to display
an onionlike structure, the different onion shells corre-
sponding to the different values of N, growing from
N ¼ 0 at the center (see Fig. 1 in [1]).

Within a given N shell the mentioned correlation is less
general than apparent in Ref. [1]. For N ¼ 1 any two plane
waves are maximally distant wave-functions and have
minimally distant densities. For large N, the dimension
of configuration space makes the largest distances expo-
nentially more likely for wave functions than for densities.
The D� vs D curves would thus tend to a step function, as

indeed observed in Fig. 2(c) of [1] for ground states of
model Hamiltonians [3] with up toN ¼ 8. If a metric could

be defined from D1=N it might recover a significant corre-
lation with D� for larger N. As it stands it should be useful

for few-particle systems.
For different values of N the case rests on two points:

(i) If defining vacuum at the onion center as � ¼ 0 and
�ðxÞ ¼ 0 in each metric space, the distance from any N

state to the center is
ffiffiffiffi

N
p

, and N for its density. (ii) The
‘‘minimum distance’’ between states with different N val-

ues is defined as j ffiffiffiffi

N
p � ffiffiffiffiffiffi

N0p j, and as jN � N0j for the
densities. We show here that the intershell aspect of the
onion paradigm is valid for the density (actually a stronger
case than originally stated), while it is not so for Fock
space. Starting with the density, the fact that �ðxÞ ¼ 0 for
N ¼ 0 is easy to validate, since �ðxÞ is a function defined
on the same x space for any N, trivially extending to
�ðxÞ ¼ 0 (e.g. �ðxÞ ¼ h�jc yðxÞc ðxÞj�i, with the c ’s
as the relevant field operators, and j�i anyN-particle state,
including the vacuum state).

The second supporting argument as stated in Ref. [1] is
weak, since the minimal distance for densities in different
N shells is defined irrespective of Eq. (2). It is easy to see,
however, that the minimal distance for densities for N and

M particles is jN �Mj as a direct consequence of the
original definition in Eq. (2) extended to variable N.
Taking N >M, the minimal distance between a N density
and a M density, D�ð1Nj2MÞ, happens when �N

1 ðxÞ �
�M
2 ðxÞ everywhere, in which case D�ð1Nj2MÞ ¼ N �M

exactly (the argument also holds for N ¼ M, for which
the condition �N

1 ðxÞ � �M
2 ðxÞ, 8x is only fulfilled if both

densities are equal everywhere). The density onion case is
further supported by the authors’ argument that maximum
distance occurs for locally nonoverlapping densities
(�1ðxÞ�2ðxÞ ¼ 0, 8x). It generalizes trivially to N � M,
giving D�ð1Nj2MÞ ¼ N þM, consistent with the onion.

D� varies smoothly from jN �Mj to N þM.

Now for interstate distances [Eq. (1)] among different
shells. If considering states with well defined particle

number, Eq. (1) yields Dð1Nj2MÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þM
p

. This is ac-
tually consistent with the onion picture as the maximum
distance between states with N and M particles: In the
hemispheric picture of Fig. 1(b) of Ref. [1] the maximum
distance is that between a state in the pole and a state in the

equator, which, for spheres of radii
ffiffiffiffi

N
p

and
ffiffiffiffiffi

M
p

, gives

precisely
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þM
p

. It furthermore confirms the radius of

the sphere to
ffiffiffiffi

N
p

, by taking M ¼ 0. The problem is that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þM
p

is the distance for any two states of N and M
particles, very much against the onion-shell paradigm, and
in contradiction with their definition of a minimal distance

of j ffiffiffiffi

N
p � ffiffiffiffiffi

M
p j. Alternative definitions to Eq. (1) could be

built by substituting jh1j2ij by a (suitably normalized)
expression like (for N1 ¼ N2 þ 1):

min
�

jh1jcy�j2ij; with cy� ¼
Z

dx�ðxÞc y; (3)

for any 1-particle wave function �ðxÞ. D then takes values

between
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijN1 � N2j

p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1 þ N2

p
. As it stands, however,

the wave-function metric based on Eq. (1) is inconsistent
with the onion geometry.
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