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Regulatory dynamics in biology is often described by continuous rate equations for continuously
varying chemical concentrations. Binary discretization of state space and time leads to Boolean dynamics.
In the latter, the dynamics has been called unstable if flip perturbations lead to damage spreading. Here,
we find that this stability classification strongly differs from the stability properties of the original
continuous dynamics under small perturbations of the state vector. In particular, random networks of
nodes with large sensitivity yield stable dynamics under small perturbations.
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The functioning of organisms on the molecular level is a
research topic of increasing attention. Survival and repro-
duction requires an autonomous regulation of chemical
concentrations in the living cell. Modeling such regulatory
dynamics, various mathematical approaches have been
studied, from discrete to continuous methods, from deter-
ministic to stochastic techniques, from static to dynamical
models, from detailed to coarse grained perspectives [1];
see Ref. [2] for an overview.

Boolean dynamics [3-8] is a framework for modeling
regulatory systems, especially for precise sequence control
as observed in morphogenesis [9] and cell cycle dynamics
[10] but also in the regulation of the metabolism [11].
Using binary (on-off) concentrations as an idealization,
Boolean dynamics directly implements the logical skeleton
of regulation. Values of system parameters, such as binding
constants, production, and degradation rates, etc., are not
needed. This abstraction simplifies computation and ana-
Iytical treatment. Boolean networks have been extracted
directly from the literature [6,12] of known biochemical
interactions or obtained by discretization of differential
equation models [13]. Known state sequences and re-
sponses of several systems have been faithfully reproduced
by the discrete models [9,10].

Despite these benefits, modelers do not employ Boolean
dynamics as widely as ordinary or delay differential equa-
tions. The latter are embedded in an established framework
for state-continuous dynamical systems [14] which itself
builds on the mathematical foundations of linear algebra
and infinitesimal calculus. In particular, the definition of
stability of a solution under small perturbations is based on
the consideration of infinitesimally small neighborhoods in
state space. Stability checks for solutions of the dynamical
equations are a salient part of mathematical modeling.
Unstable solutions are not expected to be observed in a
real-world system.

In the state-discrete Boolean dynamics, large perturba-
tions are normally implemented as a flip, where the state of
a single Boolean variable is inverted. Then, the evolution
of the damage is tracked. The damage is the difference
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between the state of the perturbed and the unperturbed
system. The return map of the expected size of the damage
is known as the Derrida plot [15]. Numerous studies have
elucidated the effect of flip perturbations on regulatory
dynamics with Boolean states [16-21]. When asking if a
gene-regulatory system reproduces a prescribed trajectory
despite noise, large perturbations are to be considered in
the case of low copy numbers of regulatory molecules and
bursty stochastic response [22]. Small perturbations, how-
ever, are more appropriate when modeling systems with
large copy numbers and an integrative response to filter out
bursts; see, e.g., [23].

Here, we find that the clear distinction between the two
types of perturbations is crucial. In a continuous system,
stability or instability under small perturbations is not
indicative of the effect of flip perturbations. Likewise,
probing a Boolean system with flip perturbations does
not necessarily provide information about the stability of
the continuous counterpart under small perturbations.

An n-dimensional Boolean map f: {0, 1} — {0, 1}"
gives rise to a time-discrete dynamics

x(r+ 1) = fx(1)), (D

with x = (x,...,x,) being a Boolean state vector (bit
string) of n entries. Such a map is equivalent to a
Boolean network. When f is pictured as a network, a
node corresponds to a coordinate i of the Boolean state
vector and a directed edge j — i (from node j to node i) is
present if the Boolean function f; explicitly depends on the
Jjth coordinate.

Let us now define a continuous dynamics whose discre-
tization readily leads to the Boolean map in Eq. (1). Taking
values y;(r) € [0,1],i €{1,...,n}, and t € R, the states
evolve according to the delay differential equation

yi(t + 1) = asgn{fly()] — y;(r + D}, )

with @ an inverse time constant. For large «, this is
essentially Boolean dynamics with fast but continuous
switching between the saturation values. The simplest
choice is f = f o ®, with ® the componentwise step
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function—0;(y) = 1 if y; = 1/2, and 0,;(y) = 0 other-
wise. This choice of continuous dynamics is in close
correspondence with the discrete dynamics in the follow-
ing sense. Suppose x(0), x(1), x(2),... is a solution of
Eq. (1). Let y(¢) be a solution of Eq. (2) such that there is
a time interval [, £, ] with y(s) = x(0) for all s € [1}, t,].
Then, for all future times t € N and all s € [1, 1,],

x(1) = y(Bt + s), 3)

with 8 =1+ 1/(2a). The closest resemblance between
Boolean and continuous dynamics is obtained when choos-
ing the same initial condition; that is, y(s) = x(0) for all
s €[—1,0]. Similar correspondence between Boolean
maps and ordinary differential equations has been studied
earlier, neglecting transmission delay [24] or implement-
ing more complicated differential equations [25-28] com-
pared to Eq. (2).

Perturbations.—Given a map f, the evolution of states is
uniquely determined by Eq. (2) by an initial condition y(r)
on a time interval of unit length, here taken as[—1,0] =: 1.
We restrict ourselves to initial conditions that do not vary
on 1, y(r) = y(0) for all + € I. An initial condition with a
small perturbation is generated as

yit) == e[1 — y;,()] + (1 — €)y;(1) 4

for t € 1. The perturbation amplitudes are arbitrary num-
bers €; €]0, 1/2[. An initial condition with a flip perturba-
tion is generated as

v 1= pi(0)
yilt) = {Yi(f)

for t € I and an arbitrary node [ € {1, ..., n}. Note that the
total amplitude Y ;€; of a small perturbation may exceed
the unit amplitude of a flip perturbation. A small perturba-
tion produces small deviations from the original state
potentially at each node. A flip perturbation concentrates
a maximal deviation at a single node.

We say that the system heals from the perturbation if the
dynamics from the perturbed and unperturbed initial con-
ditions eventually become the same except for an arbitrary
time lag. Formally, healing from a small perturbation
means that there are 7, > 0 and 7 > —¢, such that

y) =y@+r7) (6)

for all t = t,. Healing from a flip perturbation means that
Eq. (6) holds analogously for y* instead of y’. We define the
heal time #;., as the smallest time 7, for which this holds.

Fixed points and bistable circuits.—Let us first consider
a fixed point as the simplest dynamical behavior. A fixed
point of the continuous dynamics is a state vector y* such
that constant y(¢) = y* is a solution of Eq. (2). This in turn
means that the time derivative vanishes at all times, equiva-
lent to y* = f(y*). The fixed points of the continuous
dynamics are exactly the fixed points of the discrete map
f. A small perturbation to a fixed point y* always heals

ifi=1
otherwise

(&)

because values after applying the threshold ® remain un-
changed; f[y'(f)] = y* for all r € I. All fixed points are
stable under small perturbations. However, a flip perturba-
tion to a fixed point does not always heal. The bistable
switch is an example. Consider a two-dimensional map f
with f(x;, x,) = (x,, x;). It gives rise to the dynamics

xi(r+ 1) = x,(1), xp(r+ 1) = x,(1), @)

with fixed points (0, 0) and (1, 1). After perturbing a
fixed point by flipping one node’s state, the system does
not return to the fixed point. It remains in the set of the
state vectors (0, 1) and (1, 0) constituting a limit cycle;
cf. Fig. 1(a). The stability of the fixed points is not obtained
when probing the dynamics with flip perturbations. The
bistable switch constitutes a first simple example of sys-
tems with different stability properties under flip and small
perturbations.

In the continuous counterpart of the alternating Boolean
state (0, 1) and (1, 0), small perturbations do not heal; see
Figs. 1(b) and 1(c). The effect of a small perturbation is to
induce a phase lag in the oscillation, being discussed in
earlier work [25,29-31].

Stability in random networks.—We now compare the
effects of the two types of perturbations on dynamics in
randomly generated networks. An ensemble of random
Boolean networks (RBNs) [5] is defined by the number
of nodes n, the number of inputs K of each node, and the
probability distribution of Boolean functions 7(f). The
latter is taken as a maximum entropy ensemble 7r,(f) o
exp[As(f)] under a given average sensitivity (s). The sen-
sitivity s(f) of a Boolean function f is the number of flips
at one of the K inputs that leads to a change of the output
value, averaged over all input vectors [32]. The resulting

(b)

P\

FIG. 1 (color online). Dynamics of two mutually activating
nodes. (a) State space of the Boolean system described by
Eq. (7). Thin arrows indicate the mapping f of states by the
dynamics; thick bidirectional arrows stand for flip perturbations.
Indicated by shaded areas, the system has three dynamical modes
(attractors): two fixed points (0, 0) and (1, 1) and a cycle of length
2 involving the states (0, 1) and (1, 0). (b) Time evolution of the
corresponding continuous system in Eq. (2) with initial condition
x1(0) = 1 (thick curve) and x,(0) = 0 (thin curve). The two nodes
switch in a synchronous mode, as indicated by vertical double
arrows akin to the Boolean state sequence (0, 1), (1, 0), (0, 1), ....
(c) Time evolution from the perturbed initial condition; x;(0) < 1,
and x,(0) > 0. The perturbation translates into a phase lag in
switching that does not heal out.
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FIG. 2 (color online). Stability of dynamics in random net-
works under perturbation by spin flip (dashed lines) and under
continuous perturbation (solid lines) in random networks with
K =2 and K = 4 inputs per node. Symbols distinguish system
size: n =300 (O), 1000 (), and 3000 (<). Each data point
gives the relative frequency of healed-out perturbations on a set
of 10* independent random realizations of network, initial con-
dition, and perturbation. Each amplitude €; of a small perturba-
tion is drawn independently from the uniform distribution on
an interval [0; r], with 0 < r < 0.5. The results are independent
of the choice of r. As a general invariance of the dynamics of
Eq. (2), with f = fo @, the qualitative effect (healing or
spreading) of a small perturbation is not altered when the
amplitude vector is multiplied with a positive scalar, keeping
each amplitude €; < 0.5.

value s(f) lies in the range from zero (for a constant
function f) to K, obtained for a parity function where,
for all input vectors, a flip of a single input state flips the
output. For RBNs, where the K inputs of each node are
drawn randomly and independently from the set of n
nodes, the average sensitivity (s) is the crucial parameter
determining the system’s response to flip perturbations
[32]. In the limit n — oo, these perturbations heal in en-
sembles with (s) <1; they spread when {s) > 1. This
change of behavior in dependence of (s) is reproduced in
Fig. 2 (dashed lines) for varying K and n.

As our main result, we show in Fig. 2 that the (s) depen-
dence of the healing probability under flip perturbations is
qualitatively different from that under small perturbations.
Only in the so-called critical region of (s) = 1 do small
perturbations spread. Both for (s) << 1 and (s) > 1, the
healing probability tends towards 1. This effect is enhanced
by increasing system size. In the limit of n — oo, one may
expect a finite probability of nonhealing only at {s) = 1.
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FIG. 3 (color online). The average time to heal from a small
perturbation increases linearly with the number of nodes in the
system for sensitivity (s) = 1 and sublinearly otherwise. The
dashed line has a slope of 1 in this double-logarithmic plot. Each
data point is the average over f., for the subset of healing
realizations. Realizations of network, initial condition, and per-
turbation are the same as in Fig. 2.

Then, the dynamics is almost always stable under small
perturbations.

The average time #;,., to heal from small perturbations
increases moderately with system size, as shown in Fig. 3.
For average sensitivity above 1, we observe a linear
increase (f,.,) < 1. For lower values of the average sensi-
tivity, the increase is sublinear.

The dynamics we have studied so far is simple but not the
only possibility to pass from the Boolean map to a continu-
ous flow. In order to check to what extent our results depend
on this choice, we repeat simulations for K = 2, with an
alternative function f [cf. Equation (2)] now taking into
account cooperative effects between inputs. Figure 4 shows
that the same qualitative result is obtained under this choice;
see the figure caption for details.

In summary, we have shown that the dynamics of large
random networks of switchlike elements typically recovers
from small perturbations of the state vector. Healing is
observed naturally at low sensitivity. However, also large
sensitivities of the nodes’ functions render the long-term
behavior of the whole system insensitive to small pertur-
bations. Instability is observed only in an intermediate
sensitivity regime that shrinks as systems become larger.

The behavior under small perturbations is essentially
different from the established stability diagram for
RBNSs. Under flip perturbations, RBNs display a transition
from healing to nonhealing (damage-spreading) behavior
at an average sensitivity of 1. It has been suggested that
networks of regulatory switches position themselves at this
transition [33], known as the edge of chaos [34]. Then,
some but not all flip perturbations spread and therefore
allow for complex information processing without render-
ing the system unreliable under noise.

188701-3



PRL 107, 188701 (2011)

PHYSICAL REVIEW LETTERS

week ending
28 OCTOBER 2011

19
0.9 I
0.8 I
0.7 I
0.6 I

0.5 I"|o—> small perturb. ]
0.4 ||+ o flip perturb. = e |

probability of healing

\ s \ s IR
0.5 1 1.5 2
average sensitivity <s>

0.3 0

FIG. 4 (color online). Healing probabilities remain qualita-
tively the same (cf. Figure 2) when using the alternative
transfer function f;(y) = O[h;(y)], with h,(y) = ay;y + byy;+
b,y + ¢, for node i taking inputs from nodes j and k. The
parameters a, by, b,, and ¢ are chosen such that /;(y) = f;(y) for
Yy € {0, 1}. If, for instance, f; is the logical AND function,
thena = 1 and b; = b, = ¢ = 0, so f;(y) = 1 if and only if the
product of inputs y;y, = 1/2. Each data point is the healing
fraction of 1000 realizations of given average sensitivity and
system size n = 30 (O), 100 (OJ), and 300 (<>). The perturbation
amplitude €; is drawn from the uniform distribution on [0; 0.01]
independently for each node i.

According to our findings, a complementary scenario is
worth discussing. The apparent conflict between respon-
siveness to external input signals and resilience to intrinsic
noise dissolves when these influences act as perturbations
at separate scales: noise corresponds to small perturba-
tions, while input signals are interpreted as the flipping
of a state. Under these assumptions, noise resilience and
responsiveness are compatible rather than conflicting in the
regime of average sensitivity above 1. Systems that com-
bine both beneficial properties are obtained ‘‘for free” in
random networks of sufficiently sensitive switching
elements.
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