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Here, we show that the incompressible Pfaffian state originally proposed for the 5
2 fractional quantum

Hall states in conventional two-dimensional electron systems can actually be found in a bilayer graphene

at one of the Landau levels. The properties and stability of the Pfaffian state at this special Landau level

strongly depend on the magnetic field strength. The graphene system shows a transition from the

incompressible to a compressible state with increasing magnetic field. At a finite magnetic field of

�10 T, the Pfaffian state in bilayer graphene becomes more stable than its counterpart in conventional

electron systems.
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Ever since the discovery of the quantum Hall state at the
Landau level (LL) filling factor � ¼ 5

2 , the first even-

denominator state observed in a single-layer system, it
has been very aptly characterized as an ‘‘enigma’’ [1]. It
was clear at the outset that this state must be different
from the fractional quantum Hall effect (FQHE) in pre-
dominantly odd-denominator filling fractions [2,3].
Understanding this enigmatic state has remained a major
challenge in all these years [4]. At this half-filled first
excited LL [5], a novel state described by a pair wave
function involving a Pfaffian [6,7] (or anti-Pfaffian [8])
has been the strongest candidate, as supported by extensive
numerical analysis [9]. More intriguing are the elementary
charged excitations at this ground state that have a charge
e� ¼ e=4 and obey ‘‘non-Abelian’’ statistics [10–12].
Recent observation of the e� ¼ e=4 quasiparticle charge
at the � ¼ 5

2 quantum Hall state [13] has brought the issue

to the fore [14]. Experimental observation of the corre-
sponding neutral modes [15] supports their non-Abelian
statistics. It has been suggested that these non-Abelian
quasiparticles, besides carrying the signatures of
Majorana fermions [16] in this system, might even be
useful for quantum information storage and processing in
an intrinsically fault-tolerant manner [17].

Electrons in recently discovered graphene [18] display a
range of truly remarkable behavior [19]. The dynamics of
electrons in monolayer graphene, a hexagonal honey-
combed lattice of carbon atoms, is that of massless Dirac
fermions with linear dispersion, chiral eigenstates, valley
degeneracy, and unusual LLs in an external magnetic field
[19]. Theoretical studies of FQHE in monolayer [20] and
bilayer graphene [21] were reported earlier by us.
Experimental observations of the � ¼ 1

3 FQHE in mono-

layer graphene [22,23] have provided a glimpse of the role
highly correlated electrons play in graphene. Given the
acute interest in studying the properties of the � ¼ 5

2 state

in conventional two-dimensional electron gas (2DEG), a
natural question to ask is how does this state manifest itself
in graphene? Below, we show that the 5

2 -Pfaffian state is, in

fact, more stable in graphene than in conventional two-
dimensional electron systems.
The Pfaffian state, which was proposed as an incom-

pressible ground state of a half-filled LL, is written as

�Pf ¼ Pf

�
1

zi � zj

�Y
i<j

ðzi � zjÞ2 exp
�
�X

i

z2i
4‘20

�
;

where the Pfaffian is defined as [6,7]

PfMij ¼ 1

2N=2ðN=2Þ!
X

�2SN

sgn�
YN=2

l¼1

M�ð2l�1Þ�ð2lÞ

for an N � N antisymmetric matrix whose elements are

Mij; SN is the group of permutations of N objects, ‘0 ¼
ð@=eBÞð1=2Þ is the magnetic length, and z ¼ x� iy. The
� ¼ 1

2 Pfaffian ground state is an exact ground state with

zero energy for a special three-particle interaction which is
nonzero only if all three particles are in close proximity to
each other [7]. For a two-particle interaction, it is important
to find a realistic interaction potential whose many-particle
ground state is well-described by the Pfaffian state.
For the conventional (nonrelativistic) 2DEG, the incom-

pressible state, related to the Pfaffian states, has been
observed only at a half-filled second LL, i.e., at the total
filling factor � ¼ 5

2 . To determine the relation of the � ¼ 5
2

ground state with the Pfaffian state, the 2DEG at � ¼ 5
2 has

been extensively studied numerically for a finite number of
electrons [14]. A relatively good (but not 100%) overlap
with the Pfaffian state was found. The overlap can be
improved by varying the interelectron potential, for ex-
ample, by increasing the thickness of the two-dimensional
layer [24]. By varying the interaction function, the close
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proximity to the Pfaffian function with an overlap of 99%
can be achieved, but that is obtainable only for unrealistic
interaction potential shapes. We show below that, in bi-
layer graphene, the ground state at one of the LLs is well-
described by the Pfaffian state with an overlap of more than
92%, which makes bilayer graphene the desired system to
observe the 5

2 -Pfaffian state.

The interaction properties of a two-dimensional system
are commonly determined by the Haldane pseudopoten-
tials [25], which are the energies, Vm, of two electrons with
relative angular momentum m. The � ¼ 1

2 Pfaffian state is

most sensitive to the lowest pseudopotentials, V1, V3, and
V5. The Haldane pseudopotentials make it convenient to
study the finite-size systems numerically in the spherical
geometry [3]. The size of the sphere and the number of
single-particle states are determined by the parameter S,
where 2S is the number of magnetic fluxes through the
sphere in units of the flux quanta. The single-electron states
are characterized by the angular momentum S and its z
component Sz. For a many-electron system, the corre-
sponding states are classified by the total angular momen-
tum L and its z component [26]. For a system with N
electrons, the � ¼ 1

2 Pfaffian state is realized at 2S ¼
2N � 3. Here, the filling factor � ¼ 1

2 is defined as the

filling factor of a given LL. In the spherical geometry,
the � ¼ 1

2 Pfaffian state is the exact ground state for a

three-particle interaction potential that is nonzero only if
the total angular momentum of three particles is 3S� 3.

It is described by the interaction Hamiltonian Hint¼
e2

�‘0

P
i<j<kPijkð3S�3Þ, where PijkðLÞ is the three-particle

projection operator onto the state with total angular mo-
mentum L [7].

For a single graphene layer, the LL wave functions
are mixtures of those for LLs of nonrelativistic systems;
for example, the first LL in graphene can be expressed in
terms of the zeroth and the first LL wave functions of the
nonrelativistic system [20]. Our numerical analysis of
finite-size systems in a spherical geometry with up to 14
electrons shows that the largest excitation gap of
about 0:02e2=ð�‘0Þ occurs at the n ¼ 2 graphene LL.
Although the excitation gap at a finite-size system in this
case is comparable to the � ¼ 5

2 nonrelativistic system, the

overlap of the ground state with the Pfaffian state is less
than 0.5 at all LLs. This means that an incompressible
� ¼ 1

2 Pfaffian state is unlikely to be found in monolayer

graphene.
We show here that, in bilayer graphene, on the other

hand, the stability of the � ¼ 1
2 Pfaffian state is greatly

enhanced. Notably, one of the bilayer LLs (for a given
valley) has a stable � ¼ 1

2 Pfaffian state, whose properties

can be controlled by a magnetic field. The maximum over-
lap of the finite system ground state with the corresponding
Pfaffian state occurs at finite values of the magnetic field.
We found that the � ¼ 1

2 incompressible state of a bilayer

graphene is more stable than the corresponding state in a
conventional two-dimensional system.
We consider a bilayer graphene which consists of two

coupled graphene layers with the Bernal stacking arrange-
ment. Each graphene layer has two sublattices, say,A andB.
For the Bernal stacking arrangement, the coupling ismainly
between the atoms of sublattice A of the lower layer and
atoms of sublattice B0 of the upper layer. The coupling is
determined by the interlayer hopping integral, t. For one
projection of spin, e.g.,þ 1

2 , the state of the bilayer graphene

can be expressed in terms of the four-component spinor
ðc A; c B; c B0 ; c A0 ÞT for valley K and ðc B0 ; c A0 ; c A; c BÞT
for valley K0. The subindices A, B and A0, B0 correspond to
lower and upper layers, respectively. The properties of
bilayer graphene can be controlled by a bias voltage, �U,
which is the potential difference between the upper and
lower layers [19].
The discrete eigenstates of the bilayer Hamiltonian are

labeled by the index n ¼ 0; 1; 2; . . . [27,28]. For a given
value of n, there are four bilayer LLs. The corresponding
wave functions can be expressed in terms of n, jn� 1j, and
nþ 1 conventional LL wave functions [27,28]. We present
our results for N ¼ 8, 10, and 14 electron systems. To
determine the incompressibility of the system, we calcu-
lated the excitation gap and the overlap of the ground state
wave function with the Pfaffian function. We consider only
one valley, for example, valley K. The results are similar
for K0.
For all but one bilayer LL, the overlap of the � ¼ 1

2

ground state with the Pfaffian state is found to be small
(< 0:6). At the same time, there is one special LL (for each
valley) at which the � ¼ 1

2 ground state is well-described

by the Pfaffian function. This level corresponds to one of
the LLs with n ¼ 0. At a small bias voltage, �U, the wave
function corresponding to this LL is the mixture of con-
ventional LL wave functions with indices 0 and 1. It has the

form ð�0; 0; 0; ðt=
ffiffiffi
2

p Þ�1Þ, where�n are nth nonrelativistic
LL functions and t is in units of @vF=‘0. At small values of
the dimensionless hopping integral, tð‘0=@vFÞ, the inter-
action within this level is similar to the one at the lowest LL
of a conventional system, which does not show an incom-
pressible � ¼ 1

2 state. At large values of tð‘0=@vFÞ, the
special bilayer LL is similar to the n ¼ 1 LL of the
conventional system and shows the � ¼ 1

2 Pfaffian state.

By varying the magnetic field, the dimensionless interlayer
hopping integral is changed, which modifies the interaction
within the LL and changes the properties of the � ¼ 1

2 state.

We present our results only for this special LL.
At the zero bias voltage, this special LL has zero energy

and is degenerate with another level, which has the form
ð0; 0; 0; �0Þ. In addition to this accidental degeneracy,
each level has twofold valley degeneracy, which makes
the zero energy state fourfold degenerate. At a finite bias
voltage, this degeneracy is completely lifted and the spe-
cial LL of the bilayer can be isolated. In Fig. 1(a), we show

PRL 107, 186803 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 OCTOBER 2011

186803-2



the lowest LLs of a bilayer at a finite bias voltage. Two
solid red (light gray) lines correspond to the special LLs of
the two valleys. The many-particle properties of these two
levels are identical.

In Figs. 1(b) and 1(c), we show the magnetic field
dependence of the overlap of the � ¼ 1

2 ground state with

the Pfaffian state and the corresponding excitation gap. At
a small magnetic field, the dimensionless hopping integral
is large and the system becomes similar to the conventional
system at the n ¼ 1 LL. With an increasing magnetic field,
the properties of the system change nonmonotonically and
the overlap with the Pfaffian state reaches its maximum at a
magnetic field of �10 T (and for t ¼ 400 meV). The
overlap at this point is � 0:92, which is a major improve-
ment over the nonrelativistic system (� 0:75). The dimen-
sionless hopping integral at this point is tð‘0=@vFÞ � 4:89.

At a large magnetic field, the system is close to the
n ¼ 0 nonrelativistic LL, the overlap with the Pfaffian
state becomes small, and the � ¼ 1

2 state is finally

compressible. This dependence on the magnetic field
opens up interesting possibilities to investigate the stability
and appearance and disappearance of the � ¼ 1

2 Pfaffian

state in a single bilayer LL. Although the Pfaffian state
becomes unstable only at large magnetic fields, this prop-
erty strongly depends on the value of the hopping integral.
At smaller hopping integrals, the magnetic field range of
stability of the Pfaffian state shrinks. For example, at
t ¼ 300 meV, the Pfaffian state is expected to be unstable

atB� 40 T (see Fig. 1). Another parameter which controls
the properties of the graphene bilayer is the bias voltage.
Although the bias voltage modifies the bilayer wave func-
tions, we found that the overlap of the ground state with the
Pfaffian state and the excitation gap have weak dependence
on the bias voltage within a broad range of�U (see Fig. 2).
The overlap monotonically decreases with increasing �U,
which suppresses the overlap by only a few percent. The
large excitation gap and the large overlap observed for
different system sizes are shown in Fig. 3.
The stability and the strength of the Pfaffian state can be

also analyzed in terms of the general dependence of the
pseudopotentials, Vm, on the relative angular momentum,
m. We characterize the interaction potential of the bilayer
graphene by two parameters: V1=V5 and V3=V5 [14]. These
parameters depend on the magnetic field. By varying the
magnetic field, this dependence can be shown as a line in
the ðV1=V5Þ � ðV3=V5Þ plane (Fig. 4). That line connects
the initial point at B ¼ 0 to the final point, corresponding
to a large magnetic field, B ¼ 1. The � ¼ 1

2 bilayer gra-

phene system at the initial and final points are identical to
the conventional systems at the first (n ¼ 1) and zero
(n ¼ 0) LLs, respectively. In Ref. [14], the region of the
compressible � ¼ 1

2 state and the region of strong overlap

with the Pfaffian state were identified (see Fig. 4). With an
increasing magnetic field, the � ¼ 1

2 bilayer graphene sys-

tem transforms from a � ¼ 5
2 nonrelativistic state (at small

values of B) to a more stable incompressible state with
large overlap, and finally to a compressible state (at a large
magnetic field). For the hopping integral t ¼ 400 meV, the
transition from the incompressible to a compressible � ¼ 1

2

state occurs at B� 100 T.

FIG. 2. (a) The excitation gap (b) and the overlap with the
Pfaffian state versus the bias voltage, �U. Here, N ¼ 14 and
2S ¼ 25, and the magnetic field is 10 T.

FIG. 1 (color online). (a) Few lowest LLs of a bilayer gra-
phene, shown for �U ¼ 100 meV and t ¼ 400 meV. The two
solid red (light gray) lines belonging to different valleys corre-
spond to the LLs where the � ¼ 1

2 Pfaffian state can be observed.

(b) Overlap of the exact many-particle ground state with the
Pfaffian function. (c) Excitation gap of the � ¼ 1

2 state. The

results are for N ¼ 14 and 2S ¼ 25 and the zero bias voltage.
The black and red (light gray) lines correspond to t ¼ 400 meV
and 300 meV, respectively. Here, the energy unit is "c ¼ e2=�‘0.

FIG. 3. (a) The excitation gap and (b) the overlap with
the Pfaffian state are shown for different number of electrons:
N ¼ 8, 10, and 14. The magnetic field is 10 T, and the bias
voltage is zero.
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In the above analysis, we have considered the properties
of the electron system in a single LL, taking the projection
of interaction potential on a given LL. In this approach, we
disregard the interaction-induced mixing of LLs. The
strength of this mixing is determined by the parameter � ¼
ðe2=�‘0Þ=�n, where �n is the inter-LL energy separation.
In bilayer graphene, this parameter is approximately in-

versely proportional to B1=2 and decreases with increasing
magnetic field. For � � 4, � is close to unity at B � 12 T.
Although, at smaller magnetic fields, B< 12 T and � > 1,
from the analysis of LL mixing in conventional systems
[29,30], it is safe to conclude that, for up to � ¼ 3, the
changes in the overlap with the Pfaffian state are less than
20%. We expect that our results should be qualitatively
correct even at small magnetic fields, e.g., B> 2 T.

In conclusion, a stable incompressible � ¼ 1
2 Pfaffian

state can in fact be observed in a bilayer graphene only
at one LL. The properties of this state strongly depend on
the value of the magnetic field. With an increasing mag-
netic field, the � ¼ 1

2 state transforms from an incompress-

ible state at a small magnetic field to a compressible state at
a large magnetic field. At intermediate values of the mag-
netic field, B� 10 T, the � ¼ 1

2 state becomes much more

stable than the corresponding state in a conventional two-
dimensional electron system. Therefore, bilayer graphene
is an unique physical system to study the equally unique,
incompressible � ¼ 1

2 Pfaffian state.
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