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Using nonequilibrium dynamical mean-field theory, we study the isolated Hubbard model in a static

electric field in the limit of weak interactions. Linear response behavior is established at long times, but

only if the interaction exceeds a critical value, below which the system exhibits an ac-type response with

Bloch oscillations. The transition from ac to dc response is defined in terms of the universal long-time

behavior of the system, which does not depend on the initial condition.

DOI: 10.1103/PhysRevLett.107.186406 PACS numbers: 71.10.Fd

In the absence of scattering of charge carriers in a metal,
a static electric field results in undamped oscillations of the
current, which are known as Bloch oscillations. The fate of
these oscillations in the presence of strong interparticle
scattering is theoretically not well understood. Intuitively,
one might expect them to get damped until a direct current
(dc) is established at long times, which would then be given
by the linear or nonlinear dc response of the system. In the
following we demonstrate that this intuitive picture is not
true in general for a closed system: For the Hubbard model,
we show that an electric field induces a dc response only if
the interparticle interaction exceeds a critical value.

Bloch oscillations are most easily understood in a simple
tight-binding model. For example, if a linear potential is
added to a tight-binding chain with lattice spacing a, the
single-particle spectrum changes from a continuous energy
band to an infinite set of levels at integer multiples of the
potential difference eaE between neighboring lattice sites
(for a review, see Ref. [1]). The eigenstates of this so-called
Wannier-Stark ladder are localized on a length l / 1=E,
and beating oscillations at the Bloch frequency !B ¼
eaE=@ arise from any linear superposition of those states.
A direct experimental observation of Bloch oscillations in
solids is hardly possible because extremely large fields are
needed to make the period 2�=!B short compared to
typical scattering times. However, Bloch oscillations
have been observed in semiconductor superlattices [2],
and, within a well-controlled setup, using ultracold atomic
gases in optical lattices [3].

Our initial question about the establishment of a dc
regime becomes somehow trivial for a system that is
coupled to a thermal bath. In this case one will always
get a nonzero current at long times, although for large
fields the magnitude of this current can exhibit an interest-
ing dependence on the system-bath coupling [4]. A closed
system, on the other hand, which is the appropriate repre-
sentation for cold atoms in an optical lattice, cannot sustain
a true steady-state with nonzero current j in a constant

field, because the energy E always changes at a rate _E ¼ Ej
(e.g., Ref. [5]). So the question arises how one can possibly
define a transition from an oscillating to a direct current in

such a system. As it turns out, the answer to this is already
the key for understanding the nature of the transition itself:
While the true steady current is zero, the system establishes
a universal relation between its thermodynamic quantities
and the current well before the final state is reached, and it
is by means of this universal behavior that one can clearly
separate a linear responselike dc regime from an alternat-
ing current (ac) regime, in which the system exhibits Bloch
oscillations at long times.
In this paper we investigate the ac/dc transition within

the half-filled Hubbard model,

H ¼ X
ij;�¼";#

tijc
y
i�cj� þU

X
i

�
ni" � 1

2

��
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�
; (1)

which describes fermionic particles that can hop between
the sites of a crystal lattice (with hopping amplitude tij) and

interact with each other through a local Coulomb repulsion
U. We will characterize the zero-current final state (which
still feels the presence of both electric field and interaction),
and demonstrate the existence of an ac/dc transition at an
interaction U > 0. The results fit well into the picture
established by a number of recent investigations on the topic
[5–8]. Exact diagonalization of the Bose Hubbard model
shows a qualitative change of the many-body spectrum with
increasing electric field [6], and for spinless fermions, Bloch
oscillations are observed in an integrable version of the
model, while a nonintegrable version shows overdamped
behavior [5]. In the infinite-dimensional Falicov-Kimball
model oscillations are damped [7], but the relaxation to
the steady behavior is still not fully resolved there.
Moreover, our findings link the damping of Bloch oscilla-
tions to the more general question how a closed system
relaxes to a well-defined state. This question has been
intensively discussed recently, in order to understand the
thermalization of isolated many-body systems [9].
We solve the dynamics of the Hubbard model using the

dynamical mean-field theory (DMFT) [10] in its nonequi-
librium variant [11]. The electric field is treated in a gauge
with zero scalar potential and time-dependent vector
potential, E ¼ � 1

c @tA. The latter enters the Hamiltonian
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(1) via a Peierls substitution, i.e., a time-dependent shift of
the band energy �ðkÞ ! �ðk�AÞ. We choose the field
along the (1; 1; . . . ; 1)-direction in the infinite-dimensional

hypercubic lattice with a Gaussian density of states �ð�Þ ¼
e��2=

ffiffiffiffi
�

p
. The unit of energy is given by the varianceW of

the density of states (the bandwidth), time is measured in
units of @=W, and the unit of the electric field is given by
W=ea, where �e is the electronic charge and a is the
lattice spacing. The DMFT equations for this setup have
been discussed in detail in Ref. [7], and our precise im-
plementation is given in Ref. [12]. Because we are inter-
ested in the regime of weak coupling, we use iterated
perturbation theory (IPT) [10] to solve the effective impu-
rity problem of DMFT. For nonequilibrium, IPT can work
very well for small U in spite of the fact that it is not
conserving, but it breaks down rather abruptly if U is too
large [13]. In the present study, energy conservation within
IPT breaks down for U * 1:8 (at E ¼ 1), and in this
regime the method becomes unreliable. To further validate
our results, we have performed Monte Carlo simulations
[14], which reproduce the ac/dc transition, but do not allow
a systematic analysis of the long-time behavior.

If not stated otherwise, the results below show the time-
evolution of the Hubbard model in a constant electric field
for t < 0, starting from the free Fermi sea at temperature
T ¼ 1=�. Later we investigate various other initial states
and switch-on procedures of the field in order to show that
the conclusions of the paper do not depend on them. To
characterize the time-evolving state we compute the

current jðtÞ ¼ P
khcyk ðtÞckðtÞi@k�k and the local spectral

function (which is gauge-independent [15])

Að!; tÞ ¼ � 1

�
Im

Z 1

0
dsGRðtþ s; tÞei!s; (2)

where GRðt; t0Þ ¼ �i�ðt� t0ÞhfcðtÞ; cyðt0Þgþi is the re-
tarded Green function. For U ¼ 0, Að!Þ reproduces the
Wannier-Stark ladder, Að!Þ ¼ P

m�ð!�m!BÞwm, where
the weightswm are given by the amplitudes of theWannier-
Stark states which are localized at sites with a potential
energy difference m@!B [15].

Results.—Figures 1(a) and 1(b) show the time-
dependent current after an electric field E ¼ 0:5 is sud-
denly turned on in the Hubbard model. With increasing
interaction, the evolution of the current changes from
damped Bloch oscillations (ac regime) to a monotonically
decreasing current (dc regime), which is best visible on a
logarithmic scale [Fig. 1(b)]. For a quantitative character-
ization of the behavior we fit the data in the ac and dc
regimes at long times with a damped oscillation jðtÞ ¼
A cosð!tþ�Þ expð��tÞ and an exponential decay jðtÞ ¼
A expð��tÞ, respectively, [Figs. 1(c) and 1(d)]. The fits
work well everywhere except close to the transition, where
it apparently takes longer time until initial transients decay
and a simple relaxation behavior is established (this will be
discussed below).

In the ac regime, the decay rate �ðUÞ increases linearly
up toU � E, where it exhibits a kink and starts to rise more
rapidly [Fig. 1(c)]. This result can be understood within the
Wannier-Stark picture: For the given geometry, the energy
levels of the tight-binding model with linear potential are
given by integer multiples m@!B of the Bloch frequency,
and each level is highly degenerate due to the translational
invariance of the system transverse to the field. Any inter-
action U � E will lift this degeneracy and lead to bands
of width proportional to the matrix elements of the inter-
action operator in the corresponding subspace of degener-
ateU ¼ 0Wannier-Stark states. This splitting then leads to
a dephasing of the oscillations at a rate proportional to U,
and the kink can be associated with the fact that only for
U * E scattering between Wannier-Stark states with dif-
ferent m becomes effective. The argument is supported by
the behavior of the spectral function [Fig. 2(a)]. ForU&E,
we find that Að!; t ! 1Þ consists of well separated peaks
with spacing E, whose weights are approximately given by
the weights of the delta-peaks in the noninteracting spec-
trum of theWannier-Stark ladder. The gaps start to be filled
for U * E. Note that this crossover is not related to the
transition between ac and dc regimes, which occurs only at
larger values of U.
In the dc regime, the decay rate �ðUÞ decreases with

increasing interaction [Fig. 1(d)]. A simple explanation of
the exponential decay of the current in this regime is
possible in the limit of small E: Because the system is
not coupled to a reservoir, the total energy E increases a the
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FIG. 1 (color online). (a) Current jðtÞ for E ¼ 0:5 and various
values of U. At t < 0, the system is in the noninteracting
equilibrium state at � ¼ 10. Lines: IPT, Symbols (for U ¼ 1:0
and U ¼ 1:4): QMC. (b) Same parameters as (a), on a logarith-
mic scale. (c),(d) Damping rate �ðUÞ for E ¼ 0:5, obtained from
fitting jðtÞ with a damped oscillator (c) and an exponential decay
(d), respectively. Each fit is computed for two time intervals to
estimate the influence of the initial transients. (e) Damping rate
�ðEÞ for the dc regime (U ¼ 1:5, exponential fit of jðtÞ). The line
corresponds to � ¼ �1=c1E2, where �1 ¼ 0:4172 and c1 ¼
0:122 have been computed for U ¼ 1:5 (see text).
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rate _EðtÞ ¼ EjðtÞ [5]. The most simple assumption that one
can make to account for this effect is that the system
rapidly thermalizes, such that its state is a thermal equilib-

rium state with temperature TeffðtÞ and energy EðtÞ ¼
Tr½e�H=Teff ðtÞH�=Z at any given time t. (From a
Boltzmann equation, the thermalization time would be
expected to be / U�2.) The current at small E is then
given by the linear response value j ¼ �dcE. At long
times, the system approaches Teff ! 1, and both �dc and
E are asymptotically given by the leading terms of their
high-temperature expansion, �dc � �1

Teff
, E �� c1

Teff
. Hence,

energy and current obey a linear relation

jðtÞ � �EEðtÞ�1
c1

: (3)

If this is inserted back into the exact relation _E ¼ EjðtÞ,
one finds that the current exhibits an exponential decay
with rate �� �1=c1E2 for E ! 0. As a numerical check
in the present case we verify the linear relation between
current and total energy at long times [Eq. (3)] by plotting
jðtÞ against EðtÞ in Fig. 3(a). Also the E2 dependence of � is
confirmed by our numerical results [Fig. 1(e)], where the
coefficients c1 and �1 are obtained by a solution of the
DMFT equations in thermal equilibrium for � ! 0 (using
IPT). Interestingly, an analogous argument holds for a
nonintegrable model of spinless Fermions [5]. In contrast,
rapid thermalization is impossible in the Mott insulating
phase of the Hubbard model, such that a steady current can
exist for rather long times [16].

Steady state.—Both for the ac and the dc regimes we find
that the system ultimately approaches a peculiar steady
state which carries no current in spite of the electric field.

To obtain an understanding of this state, we start from the
limit of infinite temperature, which is the only equilibrium
state with zero conductivity. In equilibrium, the Green
functions G>ðt; t0Þ ¼ �ihcðtÞcyðt0Þi and G<ðt; t0Þ ¼
ihcyðt0ÞcðtÞi are related by the fundamental relation
G<ð!Þ ¼ �e�!G>ð!Þ, such that one has

G<ðt; t0Þ ¼ �G>ðt; t0Þ ¼ 1
2½GRðt; t0Þ �GAðt; t0Þ� (4)

at � ¼ 0. This ansatz, which treats quantum mechanical
creation and annihilation operators as commuting objects,
can readily be used as the definition of a generalized
infinite temperature state at nonzero E: It turns out that
there is a unique steady-state solution GRðt; t0Þ � g1ðt�
t0Þ of the DMFTequations which satisfies Eq. (4): If Eq. (4)
is enforced, IPT diagrams for the retarded self-energy can
be expressed in terms of retarded Green functions only, in
contrast to a general state, where they depend on the
occupation functions, G<ðt; t0Þ and G>ðt; t0Þ. Hence,
DMFT provides a closed set of equations for the the
spectral (retarded) components of the Keldysh Green func-
tions, which can be solved starting from the initial condi-
tion GRðt; tÞ ¼ �i. In Fig. 2(b) we show that the spectral
function (2) approaches A1ð!Þ ¼ �1=� Img1ð!Þ for
long times, which provides evidence that the state of the
Hubbard model in a field at t ! 1 is indeed characterized
by the ansatz (4). In spite of its strong excitation, this state
is still strongly influenced by the field, both in the ac and
dc regimes [Figs. 2(c) and 2(d)]. In particular, the
Hubbard bands are enhanced in the presence of the field.
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FIG. 2 (color online). (a) Retarded spectrum, Eq. (2), for the
same parameters as in Fig. 1 (E ¼ 0:5, � ¼ 10). (b) Að!; tÞ in
the central frequency range for U ¼ 0:4 and various times,
compared to the final state spectrum A1ð!;U;EÞ. (c) The final
state spectrum A1ð!;U;EÞ in the dc regime (U ¼ 1:5). (d) The
central Wannier-Stark peak of A1ð!;U;EÞ in the oscillating
regime (U ¼ 0:4), normalized to unit area.
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FIG. 3 (color online). (a) jðtÞ plotted against the total energy
EðtÞ at E ¼ 0:6, U ¼ 1:8 for various initial states: Sudden turn-
on of the field starting, from the noninteracting Fermi sea at � ¼
9 (square symbol), gradual turn-on of the field, EðtÞ ¼ Et=t0,
over a time-interval t0 ¼ 10 (diamond), and a sudden turn-on of
the field starting from interacting thermal equilibrium at � ¼ 5
and U ¼ 1:8 (triangle). For each curve, j and E have been
multiplied by a single scaling factor. (b) Same as (a), for U ¼
0:6 (c) E-U phase diagram, showing regions where the long-time
behavior is governed by oscillations (ac) or a direct current (dc).

PRL 107, 186406 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 OCTOBER 2011

186406-3



An explanation for this fact could be that for the given
geometry hopping between sites on one equipotential sur-
face is possible only by a second order process via a site at
potential difference Eae, so the bandwidth is effectively
reduced to W2=Eae in the limit of strong fields.

The transition.—The current traces in Fig. 1(b) show that
the switch from oscillating to plain exponential decay in the
long-time behavior defines a sharp transition line Uac dcðEÞ
in the E-U diagram [Fig. 3(c)]. But how does this line
depend on specifics of the system, such as initial conditions,
or the way in which the field is turned on? Figures 3(a) and 3
(b) show plots of the current against the total energy for
various initial states and one set of parameters in the ac and
dc regime, respectively. By multiplication of E and j with a
single scaling factor, all curves for fixedU and E collapse to
a unique path in the long-time limit. This reveals the re-
markable fact that the system follows a universal long-time
behavior well before it reaches the final zero-current state
discussed above. For small fields, this universal long-time
behavior is precisely given by linear response theory
[cf. Equation (3)], but we can now see that the isolated
Hubbard model actually follows this behavior only if the
interaction exceeds the critical value Uac dc.

A universal long-time behavior naturally arises if the
time-evolution for t ! 1 can be described in terms of a
linear equation for some reduced dynamical quantities yðtÞ.
An example would be a Boltzmann equation, in which yðtÞ
are densities of relevant modes. If the equation is linearized
close to a steady-state solution, the resulting linear equation
has a number of exponentially decaying eigenmodes, of
which the slowest survives at long times (with a single
weight factor determined by the initial condition). A dy-
namical transition then occurs when the relaxation times for
two such qualitatively different solutions cross as a control-
parameter is changed. The fact that the decay rate �ðUÞ
increases towards the transition both in the ac and the dc
regime is consistent with this interpretation [1(c) and 1(d)].
Furthermore, close to the transition our data cannot be fit
well with a simple relaxation law, since they look more like
a superposition of oscillating and decaying terms which are
hard to separate. However, the derivation of a linearized
dynamical equation remains an unresolved issue for the
present model. A starting point would be to linearize the
exact time-evolution given by the Dyson equation around
the final state given by the ansatz (4), but such a calculation
seems rather involved due to the time-dependence of the
gauge dependent k-resolved Green function in this state.

Conclusion.—In this Letter we have studied the Hubbard
model at weak U in a static electric field E. In spite of the
fact that the system is not coupled to a thermal reservoir, a
dc response is established at long times. However, this
holds only if the interaction exceeds a critical value, below
which the system exhibits an ac-type response with Bloch
oscillations. This ac/dc transition is defined by the long-
time behavior of the system, which does no longer depend

on the initial condition. Furthermore, we have related the
damping rate of the Bloch oscillations to the destruction of
the Wannier-Stark ladder, and we have provided an under-
standing of the zero-current final state of the closed system
in terms of a generalized infinite temperature state. Our
results may be tested in experiments with ultracold atoms
in optical lattices. In this context, it will be crucial to
understand the relevance of damping mechanisms that
result from the inhomogeneous distributions of the atoms
in the trap [17]. Furthermore, since Bloch oscillations
depend on the geometry, it would be interesting to study
their damping for different orientations of the electric field.
These issues are left for future publications.
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