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We study double-exchange models with itinerant t2g electrons in spinel and pyrochlore crystals. In both

cases the localized spins form a network of corner-sharing tetrahedra. We show that the strong directional

dependence of t2g orbitals leads to unusual Fermi surfaces that induce spin superstructures and non-

coplanar orderings for a weak coupling between itinerant electrons and localized spins. Implications of

our results to ZnV2O4 and Cd2Os2O7 are also discussed.
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Orbital degrees of freedom have attracted much atten-
tion due to their crucial role in the stability of many
unusual phases of correlated materials [1]. In particular,
the presence of degenerate orbitals in frustrated magnets
can lift the spin degeneracy through various spin-orbital
interactions. For Mott insulators with spins residing on a
frustrated lattice, such as triangular or pyrochlore, geomet-
rical constraints prevent spins from reaching a simple Néel
order. The occurrence of long-range orbital order due to
either Jahn-Teller distortion or orbital exchange reduces
the magnetic frustration by creating disparities between
nearest-neighbor (NN) exchange constants and paves the
way for magnetic ordering [2,3].

However, some of the magnetic orders observed in
geometrically frustrated compounds are difficult to explain
starting from the strongly coupled Mott-insulator regime.
For example, several vanadium spinels [4–6] exhibit a
complicated magnetic structure with ""## � � � collinear or-
dering along certain chains that is very puzzling from the
viewpoint of localized spin models. Below, we shall pro-
vide a simple explanation for the observed spin super-
structures based on a double-exchange (DE) model
which takes into account orbital degeneracy. The DE
model arises naturally for multiband compounds in which
a narrow band of localized electrons coexists with a wider
band of itinerant electrons. It can also be viewed as a mean-
field approximation to the Hubbard Hamiltonian. A well-
studied case is the DE model with itinerant eg electrons on

the cubic lattice [7]. This model has been shown to de-
scribe the rich physics of colossal magnetoresistance in
perovskite manganites [8].

Recently, there has been tremendous interest in DE
models on frustrated lattices [9–16]. The Fermi surface
geometry plays a crucial role [11,16] in the nonlocal
effective spin-spin interaction that results from integrating
out the itinerant electrons in the weak-coupling regime.
The magnetic structures stabilized by itinerant electrons
are thus often difficult to understand by using short-
range spin models. For example, an unusual noncoplanar

magnetic order, in which spins on different sublattices
point toward the corners of a tetrahedron, is shown to
appear in different coupling regimes and various commen-
surate filling fractions on the triangular lattice [11–14].
Recent investigations of DE models on pyrochlore lattice
also reveal interesting behaviors such as electronic phase
separation [15] and a complex noncoplanar order [16] at
quarter filling. However, most of these studies ignore the
orbital dependence and consider only isotropic electron
hopping.
In this Letter, we examine DE models with itinerant t2g

electrons in both spinel and pyrochlore structures with
general formulas AB2O4 and A2B2O7, respectively. In
addition to the itinerant electrons, there are localized mag-
netic moments residing on the B sites of the crystal which
form a 3D network of corner-sharing tetrahedra. These
moments are approximated by classical vectors under the
assumption that the ferromagnetic nature of Hund’s cou-
pling does not lead to strong quantum fluctuations. The O6

octahedron surrounding the B sites creates a cubic crystal
field which splits the d levels into the eg doublet and the

lower-energy t2g triplet. The strong dependence of electron

hopping on orbital orientation leads to peculiar Fermi
surfaces in both cases. In particular, the electron subsystem
reduces to a set of cross-linking Kondo chains in spinels.
We show that this feature leads to a weak-coupling insta-
bility towards the previously mentioned ""## superstructure
in vanadium spinels. Fermi surface nesting of different
origin leads to noncoplanar all-in–all-out magnetic order
in pyrochlores, which is a candidate state for the inter-
mediate insulating phase of Cd2Os2O7.
Frustrated Kondo chains in spinels.—In the spinel struc-

ture, a common quantization axis can be defined for t2g
electrons at all crystal B sites [Fig. 1(a)]. The shape of the
t2g orbitals is such that the strongest overlap is between the

same orbitals along a particular NN direction, e.g., be-
tween two dxy orbitals along either a [110] or ½1�10� bond
in the xy plane. Keeping only this dominant term, electrons
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in a given orbital state can only hop along the correspond-
ing h110i chain on the pyrochlore lattice. We thus divide
these chains into three types: yz, zx, and xy, depending on
the active orbitals along the chain. Since the kinetic energy
preserves the orbital flavor, the Hamiltonian is a sum of
contributions from different orbital sectors: �H ¼ P

mHm,
where

Hm ¼ �t
X

hijikm
ðcyim�cjm� þ H:c:Þ � ~JH

X

i

Si � sim; (1)

m ¼ xy; yz; zx, and sim ¼ 1
2

P
��c

y
im����cim�. Here the

first term describes NN hopping of t2g electrons along a

h110i chain of type m; t is the dominating dd� transfer

integral. cyim� is the creation operator for d electrons at site
i with orbital flavor m ¼ xy; yz; zx and spin � ¼"; # . The
second term in Eq. (1) describes an effective on-site
Hund’s coupling between t2g electrons and localized clas-

sical spins Si (with normalization jSij ¼ 1). By regarding
model (1) as a mean-field approximation for a three-band
Hubbard Hamiltonian that has the same kinetic energy
term as �H, the effective coupling constant is ~JH ¼
4ðU=9þ 4JH=9Þjhsiij, where Uþ JH is the Coulomb re-
pulsion between two electrons in the same orbital and JH is
the bare Hund’s coupling [17].

�H models a collection of ferromagnetic Kondo chains
coupled together by the local moments. While a classical
Kondo chain is a relatively simple system, the fact that
each spin is shared by three chains with different orbitals
introduces geometric frustration. Numerical methods such
as Monte Carlo calculations become very inefficient for
conventional 3D DE models, because the dimension of the
electron Hamiltonian to be diagonalized for each spin
update scales as L3 � L3 for systems with linear size L.
On the contrary, for �H, one needs only to diagonalize
matrices whose dimension scales as L� L for the three
Kondo chains intersecting at the updated spin. The reduced
dimensionality of the problem thus allows for studying the
ground states of �H with the aid of unbiased large-scale
Monte Carlo simulations.

We first consider the case with three d electrons per site.
The electron energy is minimized by placing one electron

at each of the three different 1D bands, giving rise to half
filled Kondo chains with a Fermi wave vector kF ¼ �=2l
[Fig. 2(c)], where l is the NN distance. The two Fermi
points are nested by a commensurate wave vector q1=2 ¼
2kF ¼ �=l, leading to magnetic Néel order in the presence
of Hund’s coupling. However, direct inspection shows that
such a collinear Néel order cannot be simultaneously at-
tained on all chains of the pyrochlore lattice. Instead,
Monte Carlo simulations on L ¼ 8 lattices (with 16L3

spins) show that the total energy is minimized by the
noncoplanar all-in–all-out spin order shown in Fig. 2(a).
The magnetic order of each chain consists of ferromagnetic
and staggered components, which are perpendicular to
each other. A similar noncoplanar structure also occurs in
pyrochlore compounds, e.g., Ho2Ti2O7, generally known
as spin ice [18]. It is worth noting that, while the non-
coplanar spins in spin ice are stabilized by strong single-
ion anisotropies, the DE Hamiltonian �H is rotationally
invariant; any global rotation of the all-in–all-out order
leads to another ground state of �H.
The situation is more complicated for transition metals

with two d electrons per site, like the vanadium spinels
AV2O4, where A ¼ Zn, Cd, or Mg. In an ideal cubic spinel,
equal distribution of electrons among the Kondo chains
corresponds to 1=3 filling fraction. The classical ground
state of a single Kondo chain at 1=3 filling has a ""#
magnetic order with a period of 3l. Again, such a simple
arrangement of spins is precluded by geometric frustration.
Our numerical minimization on large finite systems yields
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FIG. 2 (color online). (a) The noncoplanar all-in–all-out mag-
netic order and (b) collinear spin superstructure with wave vector
Q ¼ ð0; 0; 2�=aÞ in spinels. Note the ""## � � � order along yz and
xz chains and a "#"# � � � Néel order on xy chains in (b). Panels (c)
and (d) show the corresponding electron band structures of the
three 1D chains with different orbitals. In (c) all three types of
bands are half filled, leading to the noncoplanar order in (a)
when perturbed by Hund’s coupling. The filling fractions in (d)
are 1=2 for xy band and 1=4 for both yz and zx bands. Inclusion
of JH gives rise to the collinear superstructure in (b).

FIG. 1 (color online). A unit cell of the pyrochlore lattice and
the configuration of local oxygen octahedra in (a) spinel and
(b) pyrochlore crystals. The blue and red balls denote the (B-site)
transition-metal and oxygen ions, respectively.

PRL 107, 186403 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 OCTOBER 2011

186403-2



a 3D noncoplanar magnetic order with wave vector Q ¼
2�
a ð13 ; 13 ; 1Þ, where a ¼ 2

ffiffiffi
2

p
l is the length of a conventional

cubic unit cell; the extended magnetic unit cell contains
108 spins.

Collinear superstructure in vanadium spinels.—Instead
of the above complex order which preserves orbital degen-
eracy, experiments showed that vanadium spinels undergo
a cubic-to-tetragonal structural transition with lattice con-
stants c < a ¼ b [4–6]. Contrary to the elongation, which
is favored by a Jahn-Teller ion with two t2g electrons, the

observed tetragonal compression can be understood as
originating from the band Jahn-Teller instability. The lat-
tice distortion results in a crystal-field splitting of the t2g
levels as shown schematically in Fig. 2(d). With two d
electrons per site, the lower-energy xy orbital is always
occupied by one electron in the intermediate and strong-
coupling regimes. By assuming that the mean-field deriva-
tion of Eq. (1) can be extended into the intermediate-
coupling regime, we obtain a DE Hamiltonian with S ¼
1=2 local moments provided by the electron that is local-
ized in each xy orbital:

HDE ¼ X

m¼yz;zx

Hm þ JAF
X

hijikxy
Si � Sj: (2)

The lattice distortion also reduces the hopping integral of
xy electrons providing further justification for the deriva-
tion of Eq. (2). Here JAF is the exchange constant between
localized spins along the [110] and ½1�10� chains. As the
magnet is cooled, antiferromagnetic spin correlations de-
velop first along these chains as indeed observed [4]. A
long-range 3D magnetic order resulting from interactions
between different spin chains sets in at a lower temperature
[4–6]. However, the crossing-chain coupling is geometri-
cally frustrated if only NN spin interactions are taken into
account [19,20].

Here we provide a simple picture of the unusual mag-
netic order of these vanadates based on the DE model (2).
Because the other d electron can occupy either yz or zx
orbitals, the corresponding bands are both 1=4 filled. In the
presence of Hund’s coupling JH, the usual Fermi-point
nesting thus leads to the formation of ""## � � � superstruc-
ture with q1=4 ¼ 2kF ¼ �=2l on both yz and zx chains. In

the weak-coupling regime, this collinear ordering (same
amplitude for �q1=4) is always more stable than the

single-q spiral order, because both wave vectors q1=4 and

�q1=4 are required to gap the two Fermi points of each

chain. The corresponding 3D collinear magnetic order
[Fig. 2(b)] characterized by wave vector Q ¼ ð0; 0; 1Þ is
consistent with the experiments (we shall from now on
express the wave vectors in units of 2�=a for conve-
nience). This collinear structure is also free of geometrical
frustration, as individual chains are in their respective
ground states simultaneously. The mechanism for the for-
mation of this magnetic order is similar to the orbitally
induced Peierls instability in the spinel MgTi2O4 [21].

Although the above collinear spin order can also be
explained within a local spin picture, an ad hoc third-
neighbor antiferromagnetic exchange has to be introduced
in order to stabilize the ""## structure along yz and zx chains
[19]. On the other hand, our approach based on the itiner-
ant DE model provides a natural explanation for the for-
mation of these superstructures in the absence of orbital
order. In addition, recent ab initio calculations and experi-
mental studies indicated that some vanadium compounds
are indeed close to the metal-insulator transition [22,23],
giving further support to the itinerant picture adopted here.
Although the above conclusion is valid only for weak JH=t
and is based on a mean-field treatment of the multiband
Hubbard model, a more exact calculation that takes into
account the electron correlations gives a consistent result,
which will be presented elsewhere.
Noncoplanar magnetic order in metallic pyrochlore.—

We now turn to the DE model with degenerate orbitals on
the pyrochlore structure [Fig. 1(b)]. Our theory provides a
plausible explanation for magnetic ordering and metal-
insulator transition in the pyrochlore oxide Cd2Os2O7.
This compound undergoes a continuous metal-insulator
transition at TMI � 225 K [24–26]. The resistivity in-
creases by 3 orders of magnitude upon cooling below
TMI. The transition is accompanied by a sharp reduction
of magnetic susceptibility, indicating the occurrence of
antiferromagnetic order [25]. The specific-heat anomaly
at TMI is found to be well described by a mean-field
BCS-type phase transition. The electron activation energy
obtained from resistivity measurements also exhibits a
BCS-like behavior near TMI [25].
These experimental observations justify a mean-field

approach for the metal-insulator and magnetic transition
in Cd2Os2O7. As discussed above, the mean-field approxi-
mation reduces the multiband Hubbard model to the fol-
lowing DE model:

HMF ¼ �X

ij

X

mn;�

tmn
ij cyim�cjn� � ~JH

X

i

X

m

Si � sim: (3)

Here the orbital index m refers to the quantization axes of
the local crystal fields which are different in the four non-
equivalent crystal B sites [Fig. 1(b)]. Contrary to the case
of spinels, the orbital flavor is not conserved by the kinetic
term. To obtain the hopping matrix, we expand the t2g
orbital wave function at a given sublattice s in the basis

of common coordinates for the cubic pyrochlore: j�ðsÞ
m i ¼

asmkj�ki. The details of the transformation coefficients asmk

can be found in Ref. [27]. The resulting hopping matrix is

tmn
ss0 ¼

P
kla

s
mka

s0
nlh�kjHtj�li. Here the transfer integral

h�kjHtj�li is expressed by using the Slater-Koster pa-
rameters [28].
We again start by considering only the dominant

dd� hopping in the Slater-Koster parameters; the calcu-
lated tight-binding spectrum is shown in Fig. 3(a). In the
metallic pyrochlore Cd2Os2O7, the Os5þ ion has three d
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electrons corresponding to a half filled band. The Fermi
level lies at � ¼ 0 for this filling fraction, and the resultant
Fermi ‘‘surface’’ consists of three lines and four points at
the boundary of the Brillouin zone. The three Fermi lines
are diagonals of the square surface at the zone boundary,
while the Fermi points are located at the high symmetry L
point kL ¼ ð12 ; 12 ; 12Þ [Figs. 3(a) and 3(b)].

Interestingly, this unusual Fermi surface can be nested
by three wave vectors: Q1 ¼ ð1; 0; 0Þ, Q2 ¼ ð0; 1; 0Þ, and
Q3 ¼ ð0; 0; 1Þ. In particular, the Fermi lines are topologi-
cally equivalent to three ‘‘circles,’’ each of which can be
completely nested by one of the Q vectors [16]. To deter-
mine the optimal ground state, we minimize the energy
among all the spin orderings for which the noninteracting
system has a divergent susceptibility. In other words, we
introduce a variational amplitude for the uniform ordering
with Q0 ¼ 0 and each wave vector Qi that leads to perfect
nesting of the Fermi surface. Restricted to this particular
set of magnetic structures, our simulated-annealing mini-
mization yields a noncoplanar spin order characterized by
a single wave vector Q0 ¼ 0; the magnetic unit cell is the
same as the crystal one. Spins on the four inequivalent sites
point toward the corners of a tetrahedron. The so-called

all-in–all-out structure shown in Fig. 2(a) is an example of
the noncoplanar ‘‘tetrahedral’’ order. The corresponding
band structure is shown in Fig. 3(c) for Hund’s coupling
~JH ¼ 0:05t. A charge gap opens at the original Fermi
energy, as can also be seen in the calculated density of
states [Fig. 3(d)].
The noncoplanar spin structure obtained above can be a

strong candidate for the magnetic order below TMI in
Cd2Os2O7. This simple q ¼ 0 order also preserves the
cubic symmetry. Experimentally, the metal-insulator tran-
sition was found to be accompanied by a slight change in
unit-cell volume of less than 0.05%. More importantly, no
change in crystal symmetry was observed below TMI.
Although the exact magnetic structure is yet unclear, the
q ¼ 0 noncoplanar order is consistent with a recent �SR
measurement [26]. Interestingly, upon further cooling,
an incommensurate spin density wave discontinuously
develops below T � 150 K [26]. This might indicate the
breakdown of the mean-field approximation deep in the
insulating phase where strong electron correlations play a
predominant role.
In summary, we have studied the DE model with t2g

electrons on the pyrochlore lattice. By taking into account
the orbital-dependent hopping, we showed that magnetic
properties of spinels close to the metal-insulator transition
can be understood by using the picture of cross-linking
Kondo chains coupled by localized moments. Our theory
provides simple and elegant explanations for the unusual
spin superstructure observed in several vanadium spinels.
We also proposed a novel noncoplanar tetrahedral order for
the magnetic insulating phase of the pyrochlore Cd2Os2O7.
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