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A new parameter-free approximation for the exchange-correlation kernel fxc of time-dependent density-

functional theory is proposed. This kernel is expressed as an algorithm in which the exact Dyson equation

for the response, as well as an approximate expression for fxc in terms of the dielectric function, are solved

together self-consistently, leading to a simple parameter-free kernel. We apply this to the calculation of

optical spectra for various small band gap (Ge, Si, GaAs, AlN, TiO2, SiC), large band gap (C, LiF, Ar, Ne),

and magnetic (NiO) insulators. The calculated spectra are in very good agreement with the experiment for

this diverse set of materials, highlighting the universal applicability of the new kernel.
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The ab initio calculation of optical absorption spectra of
nanostructures and solids is a formidable task. The current
state-of-the-art is based on many-body perturbation theory.
A typical calculation involves two distinct steps: First, the
quasiparticle spectral density function is calculated using
theGW approximation, yielding accurate electron removal
and addition energies, and is therefore a good prediction
for the fundamental gap. In the second step, the Bethe-
Salpeter equation (BSE) is solved using the one-body
Green’s function obtained in the GW step. Resonances,
corresponding to bound electron-hole pairs called excitons,
which have energies inside the gap, can then appear in the
spectrum. The two-step procedure described above is a
well-established method for yielding macroscopic dielec-
tric tensors which are generally in good agreement with the
experiment [1–6]. Unfortunately, solving the BSE involves
diagonalizing a large matrix which couples different Bloch
state k points. As a consequence, the method is computa-
tionally expensive.

Time-dependent density-functional theory (TDDFT)
[7], which extends density-functional theory into the time
domain, is another method able, in principle, to determine
neutral excitations of a system. Although formally exact,
the predictions of TDDFT are only as good as the
approximation of the exchange-correlation (xc) kernel:
fxcðr; r0; t� t0Þ � �vxcðr; tÞ=��ðr0; t0Þ, where vxc is the
time-dependent exchange-correlation potential and � is
the time-dependent density. There are several such ap-
proximate kernels in existence, the earliest of which is
the adiabatic local density approximation (ALDA) [8],
where vxcðr; tÞ is determined from the usual ground-state
local density approximation (LDA), calculated instantane-
ously for �ðr; tÞ. In practice, however, the macroscopic
dielectric function calculated using this kernel has two
well-known deficiencies: the quasiparticle gap is too small,
and the physics of the bound electron-hole pair is totally
missing—in fact, ALDA does not improve on the results
obtained within the random phase approximation (RPA)

which corresponds to the trivial kernel fxc ¼ 0 [9]. In the
present work, we concentrate on the second of these prob-
lems, namely, the missing excitonic peak in the spectrum.
There have been previous attempts to solve this problem
[10], and there exist kernels which correctly reproduce the
peaks in the optical spectrum associated with bound ex-
citons. The nanoquanta kernel by Sottile et al. [11], derived
from the four-point Bethe-Salpeter kernel, is very accurate
but has the drawback of being nearly as computationally
demanding as solving the BSE itself. The long-range cor-
rection (LRC) kernel [12,13] has a particularly simple form
in reciprocal space, fxc ¼ ��=q2, which limits its compu-
tational cost. This kernel produces the desired excitonic
peak but depends on the choice of the parameter �, which
turns out to be strongly material-dependent [14], thereby
limiting the predictiveness of this approximation. In the
present Letter, we propose a new parameter-free approxi-
mation for fxc and demonstrate that this kernel gives
accurate results with the computational cost of ALDA.
The exact relationship between the dielectric function "

and the kernel fxc for a periodic solid can be written as

"�1ðq; !Þ ¼ 1þ vðqÞ�ðq; !Þ
¼ 1þ �0ðq; !ÞvðqÞf1� ½vðqÞ

þ fxcðq; !Þ��0ðq; !Þg�1; (1)

where v is the bare Coulomb potential, � is the full
response function, and �0 is the response function of the
noninteracting Kohn-Sham system. All these quantities are
matrices in the basis of reciprocal lattice vectors G. We
approximate fxcðq; !Þ by

fbootxc ðq; !Þ ¼ �"�1ðq; ! ¼ 0ÞvðqÞ
"000 ðq; ! ¼ 0Þ � 1

¼ "�1ðq; ! ¼ 0Þ
�00
0 ðq; ! ¼ 0Þ ;

(2)

where "0ðq; !Þ � 1� vðqÞ�0ðq; !Þ denotes the dielectric
function in the RPA. The superscript 00 indicates that
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only the G ¼ G0 ¼ 0 component is used in the denomina-
tor. The approximate functional in Eq. (2) is designed in
such a way that it satisfies two important requirements.
(a) fxc has the exact long-wavelength behavior [1,15]
fxcðq ! 0Þ ¼ �xc=q

2. Satisfaction of this condition en-
sures that the dielectric function "ðq ! 0; !Þ may have a
pole (i.e., a bound exciton) at some finite frequency, a
feature that neither RPA nor ALDA allows. This immedi-
ately follows from the exact representation " �
1� v�0=ð1� fxc�0Þ and from the fact that �0ðq ! 0Þ ¼
x0q

2. (b) In the ! ! 0 limit, the form of fxc should yield
static dielectric constants close to the RPA values, which
are known to reproduce experiments reasonably well.
Satisfaction of condition (b), for any functional
satisfying (a), is a highly nontrivial requirement because
RPA corresponds to fxc � 0. To demonstrate that the
approximation (2) satisfies condition (b), we plug Eq. (2)
into Eq. (1) and solve for "�1ð! ¼ 0Þ, ignoring, for sim-
plicity, the matrix nature of �0, ", and fxc. The resulting

inverse dielectric constant "�1ð! ¼ 0Þ ¼ 1� v�0ð! ¼
0Þ=2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½v�0ð! ¼ 0Þ�2=4� v�0ð! ¼ 0Þp

is plotted in
Fig. 1, and we find it is close to that obtained with the RPA.

We further note that, while Eq. (1) is exact, it is useful
only when either fxc or " is given; if neither are available,
then obviously it cannot be used as a generating equation
for both quantities. With the addition of the approximation
given by Eq. (2), however, both fxc and " can be deter-
mined from knowledge of �0 exclusively. The
modus operandi for doing so is to start by setting fxc ¼ 0
and then solving Eq. (1) to obtain "�1. This is then ‘‘boot-
strapped’’ in Eq. (2) to find a new fxc, and the procedure
repeated until self-consistency between the two equations
at ! ¼ 0 is achieved. This form of the kernel has two
major advantages: the computation cost is minimal, as
the most expensive part is the calculation of �0, which
needs to be calculated only once [16], and, most impor-
tantly, no system-dependent external parameter is required.

The �0 in Eqs. (1) and (2) are, in practice, calculated
using an approximate ground-state xc functional, such as the
LDA. To overcome the shortcomings of such an approxi-
mation, we further replace the �0 by a model response
function �m coming either from scissors-corrected LDA or
from GW or from LDAþU [17]. This has the advantage
that �m, and consequently �, has the correct gap to begin
with. From the formal point of view, this replacement
amounts to approximating the TDDFT kernel by

fapprxc ðq; !Þ ¼ 1

�0ðq; !Þ �
1

�mðq; !Þ þ fbootxc ðqÞ: (3)

Using the method outlined above, optical spectra for various
extended systems [18] were calculated using the full-
potential linearized augmented plane wave method [19],
implemented within the ELK code [20]. Except for the
case of solid Ar, a shifted k-point mesh of 15� 15� 15
is used to ensure convergence [21]. In the case of solid Ar, a
shifted mesh of 25� 25� 25 k points was required for
convergence of the optical spectrum. All the calculations
were performed by scissor shifting the ground-state Kohn-
Sham eigenvalues.
Presented in Fig. 2 are the results for some small (Ge�

0:67 eV) to medium (diamond �5:47 eV) band gap semi-
conductors. For comparison, experimental data, as well as
the RPA spectra, are also plotted. The experimental data
clearly show that all these materials have weakly bound
excitons, leading to a small shifting of the spectral weight
to lower energies, compared to RPA. The results from
TDDFT with the new kernel exactly follow this trend and
are in excellent overall agreement with the experiment.
For Ge, the TDDFT results are only slightly different

from the RPA values which themselves are in agreement
with experiment. It is clear that, for Ge, the RPA is enough
and fxc does not significantly improve on the result. This is
in complete contrast to the spectrum of Si, where the
spectral weight is redistributed and, corresponding to ex-
periment, the TDDFT results show an enhanced E1 peak.
The height of the E2 peak remains marginally overesti-
mated by TDDFT. This overestimation is not particular to
the present approximation for fxc; it is also a feature of the
BSE-derived kernel [11]. The dielectric function for GaAs
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FIG. 1 (color online). "�1 as a function of v�0.
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FIG. 2 (color online). Imaginary part of the dielectric tensor
("2) as a function [21] of photon energy (in eV). Experimental
data are taken from the following sources: Ge from [22], Si from
[23] and [22], GaAs from [24], diamond from [25], AlN from
[26], and SiC from [27].
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is also in very good agreement with the experiment—
subtle features like the kink at 4.25 eV are well-captured
by the bootstrap procedure.

The second column of Fig. 2 contains results for medium
band gap insulators. In all these materials, a significant
redistribution of the spectral weight to lower photon en-
ergies is observed. For diamond, the bootstrap procedure
correctly leads to an enhancement of the shoulder at low
photon energies. The position of the main peak around
12 eV is shifted to lower energies, and the whole spectrum
is in near-perfect agreement with the experiment. AlN is a
particularly interesting case—TDDFT shifts the spectral
weight to lower energies, and, although the height of the
peak is too large, the agreement with the experiment is
considerably better than that obtained by the equivalent
BSE calculation [28–30]. For SiC, the results show an
improvement over the RPA spectrum, but the height of
the main peak, as well as the shoulder at 9 eV, are over-
estimated. This trend is also observed in previous BSE
results [31].

A stringent test for any approximate xc kernel is in its
ability to treat materials with strongly bound excitons. In
these cases, a new resonant peak appears in the band gap
itself and represents the bound state of an electron-hole
pair. Perhaps the most studied test case for this phenome-
non is the ionic solid LiF. Other excitonic materials which
have also attracted attention and are considered particu-
larly difficult to treat are the noble gas solids. Plotted in the
first column of Fig. 3 are the results for three materials of
this class: LiF, solid Ar, and Ne. What is immediately clear
is that the bootstrap procedure, which gave only a slight
shift of spectral weight for Ge, now gives rise to an entirely

new bound excitonic peak inside the gap in all three cases.
The location of the peak, which corresponds to the exci-
tonic binding energy, is also very well-reproduced for all
these materials.
Despite a good overall agreement, we find that, for LiF,

the main peak at 12.5 eV is overestimated, and the peak
at 14.3 eV appears as a hump in the TDDFT results.
Nevertheless, it is encouraging to note that the BSE spec-
trum, as well that obtained using the BSE-derived kernel
[36], includes a spurious peak at around 21 eV which is
absent in the present calculations. Noble gas solids have
very weak band dispersion and polarizability, which results
in very strongly bound electron-hole pairs. In the case of
solid Ar, one can observe a strongly localized Frenkel
exciton [37] at about 12 eVand a Wannier exciton at about
14 eV. This physics is totally missing within the RPA.
Remarkably, though, the bootstrap procedure captures
both these excitons, although the Wannier exciton is sup-
pressed (see inset). Exactly like in BSE and LRC calcu-
lations [37], the Frenkel exciton is underbound by 0.7 eV.
Ne has a strongly bound Frenkel exciton, and the present
calculations capture the corresponding excitonic peak.
Similar to the BSE results [38], the height of this peak is
overestimated by the present TDDFT calculations.
The second column of Fig. 3 consists of some special

cases—NiO has an antiferromagnetic ground state, and the
LDAþU method is needed to obtain a physically reason-
able band structure for this material. This material provides
the bootstrap technique with a test of its validity for mag-
netic materials and also with a check of its performance
when the scissors-corrected LDA is replaced by LDAþU,
where U is chosen to reproduce the experimental gap. It is
clear from Fig. 3 that the bootstrap method leads once
again to the correct excitonic binding energy. The experi-
mental data for NiO are rather old and substantially broad-
ened [34], and, assuming the veracity of these data, both
TDDFT and BSE [39] overestimate the peak height. It is
worth noting that the BSE spectrum is redshifted relative to
the experiment and the TDDFT spectrum. Results for the
anatase phase of TiO2 are also presented in Fig. 3. This
material is important for its industrial use in photovoltaics
and has been well-characterized using the BSE and GW
method [40,41], as well as the experiment [35]. TiO2 is a
useful test for the bootstrap method due to its noncubic unit
cell, which leads to directional anisotropy in the optical
spectrum. As can be seen in Fig. 3, the bootstrap method
captures this anisotropy very well indeed. Even subtle
features, like the small shoulder at �4 eV in the out-of-
plane dielectric function, which is missing in the in-plane
case, are well-reproduced. We find that our peak heights,
like BSE results [40], are slightly overestimated.
It is also interesting to compare the real part of the

dielectric function with available experimental data.
Results for Si, GaAs, and diamond are presented in
Fig. 4. In all three cases, TDDFT results are in excellent
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FIG. 3 (color online). Imaginary part of the dielectric tensor
("2) as a function [21] of photon energy (in eV). Experimental
data are taken from the following sources: LiF from [32], Ar and
Ne from [33], NiO from [34], and TiO2 from [35]. In the inset, a
smaller broadening is used to better resolve the peaks [21].
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agreement with the experimental data. We note that, in the
low-frequency regime (below 2 eV), the TDDFT results for
GaAs deviate from experiments in exactly the same man-
ner as found for the LRC kernel [31].

We further note that fxc in Eq. (2) is related to the two
existing TDDFT kernels which capture the excitonic
physics. In particular, it corresponds to the LRC kernel
when � ¼ 4�"�1=ð"0 � 1Þ, and " is determined self-
consistently. Also, like for the LRC kernel, the
G ¼ G0 ¼ 0 part of fxc is by far the most important con-
tribution. Comparing our kernel to the BSE-derived ap-
proximation, in both cases, the fxc is proportional to the
screened Coulomb matrix elements "�1v. Choosing fxc to
be proportional to "�1v was also exploited by Turkowski
et al. {see Eqs. (1) and (15) of Ref. [42]}. There remain
several interesting aspects of the bootstrap method to be
explored in the future. (1) The first is determination of the
energy loss spectrum for finite q. Since ALDA is known to
give accurate results for finite q, it is also possible to
combine the bootstrap kernel in the q ! 0 limit with the
ALDA for large values of q, e.g., using the additive form
fComb
xc ¼ fbootxc ðq ! 0Þ þ fALDAxc which automatically en-

sures that fbootxc dominates for small q while fALDAxc domi-
nates for larger q. (2) Performance of the bootstrap
approximation for two-dimensional systems, like graphene
sheets or nanotubes where excitonic effects are particularly
strong and (3) performance for excitonic spectra of mo-
lecular aggregates are also interesting aspects.

Thus, we have demonstrated that the bootstrap proce-
dure gives a parameter-free TDDFT kernel which yields
very accurate optical spectra. The same functional which
produces a small shift, relative to the RPA, in the absorp-
tion edge of Ge also generates an entirely new excitonic
peak within the bandgap of LiF, Ar, and Ne. This indicates
that the bootstrap kernel has wide applicability for very
small computation effort.
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