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The dynamics of transport at the edge of magnetized plasmas is deterministic chaos. The connection is

made by a previous survey [M.A. Pedrosa et al., Phys. Rev. Lett. 82, 3621 (1999)] of measurements of

fluctuations that is shown to exhibit power spectra with exponential frequency dependence over a broad

range, which is the signature of deterministic chaos. The exponential character arises from Lorentzian

pulses. The results suggest that the generalization to complex times used in studies of deterministic chaos

is a representation of Lorentzian pulses emerging from the chaotic dynamics.
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Although it is not widely appreciated by the plasma
science community, since the early 1980s it has been
recognized by researchers in several disciplines [1–3]
that an intrinsic and observable signature of systems whose
dynamics exhibits deterministic chaos [4] is a fluctuation
power spectrum with an exponential frequency depen-
dence, i.e., Pð!Þ / expð�2!�Þ, where � is a time constant
associated with the underlying processes. The temporal
signals associated with these spectra are intermittent or
‘‘spiky,’’ consisting of a series of apparently randomly
occurring ‘‘spikes’’ or pulses. Deterministic chaos is a
nonlinear dynamical state that arises when the amplitude
of a few collective coherent modes is sufficiently large to
induce chaotic trajectories in the associated phase space.
Exponential spectra have been identified in widely differ-
ent systems including the fluctuation in sunspot number
[5], CO2 chaotic forcing of ice ages [6], the unipolar
injection hydrodynamic instability [7], turbulence in neu-
rons related to Parkinson’s disease [8], weakly turbulent
Couette-Taylor flows [9,10], and Rayleigh-Bénard convec-
tion [11], among others. In magnetized plasmas chaotic
dynamics can arise when unstable drift waves driven by the
pressure gradients exceed a threshold value [12,13]. The
potential fields of the drift waves result in E� B plasma
flows that are necessarily perpendicular to the confining
magnetic field. The phase space of such a system is two
dimensional.

The association of exponential spectra with determinis-
tic chaos has been firmly established through detailed
experiments and numerical solutions of a wide class of
nonlinear models [9–11,14], but, surprisingly, at the
present time, there is no rigorous mathematical proof that
provides a direct link between these two features. It has
been identified by researchers [1,15] who have examined
the mathematical structure of this challenging problem that
the proof requires the analytic continuation of the under-
lying equations to the complex-time domain. The purpose
of the generalization is to extract a singularity that lies near
the real axis that allows the evaluation of the Fourier

transform. The separation between the pole and the real
axis is believed to determine the value of the parameter �.
The procedure works technically, but it fails to provide a
connection to an underlying physical process. This Letter
emphasizes that recent insight into this issue has emerged
from transport experiments in magnetized plasmas, both in
a basic linear device [16,17] and in a stellarator, toroidal
configuration [18]. In these completely different experi-
ments, fluctuations in the plasma pressure are observed to
follow an exponential frequency dependence for frequen-
cies below the ion cyclotron frequency. More importantly,
the origin of the observed exponential behavior in the
spectrum is due to the fact that the pulses occurring in
the intermittent time signals have a Lorentzian functional
form. The temporal shape of an individual pulse is
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where A is the peak amplitude of a pulse centered at time t0
and having width �. The second form of the Lorentzian
given in Eq. (1) explicitly displays the pair of conjugate
poles at t ¼ t0 � i� that gives rise to the exponential nature
of the power spectrum. The power spectrum of a series of
N pulses is
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This spectrum is a sum over the residues of a collection of
single poles in the complex-time plane and is exponential if
the distribution of pulse widths �n is sufficiently narrow.
In the plasma experiments, time signals are typically

measured at a fixed spatial location by probes and are a
manifestation of the effects of spatially extended struc-
tures, generated by deterministic chaos, sweeping past
the probes. The underlying chaos is associated with coher-
ent drift waves driven unstable by the pressure gradients.
A modeling study [19] has shown that retaining two
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individual modes is sufficient to result in the generation of
Lorentzian pulses when the amplitude of the modes ex-
ceeds a threshold value. The threshold corresponds to the
E� B velocity imparted by the modes exceeding the phase
velocity of the modes (approximately the diamagnetic drift
velocity). The experimental observations [16–18] and the
model results [19] also show that the value of the parameter
� is a fraction (1=4 to 1=5) of the wave period of the drift
modes.

Since the Lorentzian pulses are typically embedded in
the coherent fluctuations or other plasma flows, they can
display distortions that may hide their true identity when
individually sampled in a time series. However, Lorentzian
pulses exhibit a robust contribution to the formation of an
exponential spectrum. Only systems that exhibit pulses
with a shape that closely approximates a Lorentzian, and
that have a relatively narrow distribution of pulse widths,
can result in an exponential spectrum. To provide a better
appreciation for this important property, an example of
various pulse shapes is shown in Fig. 1. A general pulse
shape can be generated from the inverse Fourier transform
of the function [20]

lnð ~Lð!ÞÞ ¼ �ð�j!jÞ�½1þ isFð!;�; �Þ� þ i!t0; where

Fð!;�; �Þ ¼
�
sgnð!Þ tanð��=2Þ½ð�j!jÞ1�� � 1� � � 1

�2=� lnðj�!jÞ � ¼ 1;

(3)

with sgnð!Þ ¼ �1, !< 0, sgnð!Þ ¼ 0, ! ¼ 0, and

sgnð!Þ ¼ 1, !> 0. The function ~Lð!Þ contains four
parameters that characterize the pulse: �, the shape pa-
rameter (0<� � 2), s, the skewness (� 1 � s � 1), �,
the width (0 � � � 1), and t0, the displacement (�1 �
t0 � 1). The shape parameter � allows for a continuous
variation in pulse shape from a Gaussian (� ¼ 2) to a

Lorentzian (� ¼ 1). The corresponding frequency power
spectra associated with the pulses are shown in Fig. 2.
Figure 2(a) displays the results in the popular double-
logarithmic format used in turbulence studies motivated
by Kolmogorov’s influential work [21] that predicts a
power-law dependence, and Fig. 2(b) displays the same
results in a log-linear format that sensitively identifies an
exponential spectrum because it is a simple straight line.
The choice of the specific time scale in Fig. 1 is for
comparison to the experimental survey by Pedrosa et al.
[22] shown later.
It is seen from Fig. 2 that the spectrum of a Lorentzian

pulse extends over a larger frequency range than that of a
corresponding Gaussian pulse or even an intermediate
pulse (� ¼ 1:5), as expected. But the double-logarithmic
format, because of its large frequency-scale compression,
does not exhibit a significantly different qualitative behav-
ior in the power spectra of the three pulse shapes. In fact, in
this presentation it is tempting to interpret a purely expo-
nential spectrum (� ¼ 1) as being a sequence of power
laws with varying indices, as is often concluded in turbu-
lence studies that attempt to interpret the phenomena in
terms of scalings motivated by Kolmogorov’s work [21] or
other turbulence models. For example, in the survey by

FIG. 1 (color). Examples of pulse shapes for three values of
the parameter � in Eq. (3). Gaussian is � ¼ 2:0, Lorentzian is
� ¼ 1:0, and intermediate shape � ¼ 1:5. The ‘‘tails’’ of the
pulses become more prominent as � decreases from 2.0 to 1.0.
All pulses have the same width, � ¼ 1:0 �s.

FIG. 2 (color). (a) Power spectra of the pulse shapes in Fig. 1
in a double-logarithmic format. (b) Same spectra in a log-linear
format. The exponential spectrum is easily identified as a straight
line in the log-linear format.
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Pedrosa et al. [22] the double-logarithmic format was
employed, and spectral indices of �1, and �3 were iden-
tified as present in different frequency bands. It was then
suggested that multifractal scaling may be needed to ex-
plain the results. In contrast, the log-linear display shown
in Fig. 2 illustrates the fundamental distinction between the
linear shape of the power spectrum of a Lorentzian pulse
and the curved shape of the power spectra produced by
other pulse shapes. Pulses with �> 1 exhibit a character-
istic concave curvature (i.e., downward, towards lower
values) in the low-frequency domain.

At a fixed value of the shape parameter �, the temporal
symmetry of a pulse is determined by the skewness pa-
rameter s. Symmetric pulses have zero skewness, s ¼ 0.
The solid curve in Fig. 3(a) shows an example of a
Lorentzian pulse with a skewness value of s ¼ �0:8,
which results in a pulse shape with a pronounced ‘‘leading
edge,’’ a feature emphasized by some plasma researchers
[23–25]. It is important to note, however, that the skewness
of a pulse does not alter the shape of the power spectrum.
From Eq. (3) it is clear the skewness parameter only
appears as a phase term in the Fourier transform, and
thus does not appear in the power spectrum (the square

of the absolute value of the Fourier transform). Indeed,
skewed pulses are routinely observed in the time signals
from plasma probes. Figure 3(b) presents an example of a
skewed pulse observed in the experiments of Pace et al.
[17] (solid curve), fit with a skewed Lorentzian pulse
(dashed curve) obtained from the inverse Fourier transform
of the expression given in Eq. (3). A very good fit is
obtained to the experimentally observed pulse with the
parameter values ð�; s; �; t0Þ ¼ ð1:0;�:45; 8:0 �s; 0:0Þ.
The Fourier transform of the skewed pulse, however, is a
straight line in a log-linear plot.
To concretely illustrate the connection between deter-

ministic chaos and exponential spectra in a magnetized
plasma, Fig. 4 presents the results of a simple, two-mode
(azimuthal mode numbersm ¼ 1 andm ¼ 6) model of the
relaxation of a magnetized temperature filament of the type
investigated by Pace et al. [16,17]. The amplitude of the
m ¼ 1 mode is increased adiabatically before ramping up
the m ¼ 6 mode amplitude. The interaction of the two
modes leads to chaotic Lagrangian orbits once an ampli-
tude threshold is exceeded. The top panel shows the com-
plex, but spatially connected, structures formed when the
m ¼ 1 mode is at full amplitude and the m ¼ 6 mode
amplitude is just below the threshold for chaotic behavior.
The region of elevated temperature near the center (orange)
corresponds to orbits in the ‘‘island of stability’’ associated
with the m ¼ 1 mode. The middle panel shows the fine-
scale spatial structures that develop after the onset of
chaos. The bottom panel is the frequency spectrum of the
temperature fluctuations at a time corresponding to the
middle panel, showing a clear exponential dependence in
a log-linear display, as highlighted by the red dashes. The
protruding peaks correspond to the fundamental and first
few harmonics of the coherent modes driving the chaos.
The extensive survey undertaken by Pedrosa et al. [22]

provides a major, worldwide synthesis of the observed
behavior of fluctuations at the edge of magnetically con-
fined plasmas. The survey focuses on toroidal devices that
explore fusion physics. The breadth of the devices consid-
ered is significant; it includes tokamaks and stellarators
whose parameters range in magnetic field strength from
0.67 to 2.6 Tand plasma densities from 0.5 to 3�1019 m�3.
The study by Pedrosa et al. [22] attempted to identify a
universal frequency dependence for edge fluctuations.
The empirical search sought to identify dependencies hav-
ing a functional form given by their Eq. (2), i.e., Pð!Þ ¼
P0gð�!Þ, where � is a constant that is device dependent.
By adjusting the value of � it was demonstrated in
Figs. 3(a)–3(c) of Ref. [22] that the power spectra of all
the devices exhibited identical behavior, thus indicating
that they arise from a universal process. As is typical of
such studies, the spectra were displayed in double-
logarithmic format, and, although the evidence for univer-
sality is quite impressive, it was not possible to deduce
the sought-after function gð�!Þ. Motivated by the recent

FIG. 3 (color online). (a) Skewed Lorentzian pulse (solid
curve) with a pronounced ‘‘leading edge’’ (s ¼ �0:8) is com-
pared to a symmetric pulse (dashed curve) with the same width,
8 �s. (b) An experimentally observed pulse (solid line) is
compared to a pulse generated from the inverse Fourier trans-
form of ~Lð!Þ (dashed curve).

PRL 107, 185003 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 OCTOBER 2011

185003-3



insight into exponential spectra previously discussed,
it is of interest to test if the function g is exponential.
Figure 5 provides the desired comparison. The original
Figs. 3(a)–3(c) in Ref. [22] are displayed in black. They
correspond to the spectra of fluctuations in ion saturation
current [5(a)], floating potential [5(b)], and radial turbulent

particle flux [5(c)]. The red curve superimposed on the data
surveys is essentially the same Lorentzian spectrum shown
earlier in Fig. 2(a); it corresponds to a Lorentzian pulse
whose width is �¼1�s, i.e., the curve labeled � ¼ 1 in
Fig. 1. The same curve is used in all three panels.
Remarkably, it is seen that the Lorentzian spectrum closely
matches all three curves in the survey over a significant
range of low frequencies. The match with the turbulent
flux [5(c)] is nearly perfect. The small deviation in the
high-frequency region of 5(a), where the absolute signal is
quite small, could be related to the value of the noise-floor
level. From this comparison it is evident that the desired
universal function that summarizes the well-established
universal behavior is an exponential.

FIG. 4 (color). Results of a deterministic-chaos model.
Top: Temperature contours in a filament just before the onset
of chaotic behavior. Middle: Contours after the onset of chaos.
Bottom: Power spectrum of temperature fluctuations correspond-
ing to the middle panel. fDW is the drift wave frequency.
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FIG. 5 (color). Power spectra of fluctuations in ion saturation
current (a), floating potential (b), and turbulent flux (c) from the
survey of Pedrosa et al. (black) (used with permission from [22])
is compared to the power spectrum of a single Lorentzian pulse
with width, � ¼ 1 �s (red dotted lines). The power spectra are
clearly exponential for frequencies below 400 kHz, and the
turbulent flux spectra is exponential over nearly the entire
frequency range displayed.
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Compelled by the breadth and universality of the
data survey of Pedrosa et al. [22], and by the independent
observation of exponential spectra in controlled studies in a
linear device [16,17], it is well warranted to conclude that,
in general, the fluctuation spectrum at the edge of mag-
netically confined plasmas is exponential. Furthermore,
because exponential spectra are widely accepted as a sig-
nature of deterministic chaos, it is appropriate to deduce
that deterministic chaos regulates the underlying dynamics
at the edge of magnetically confined plasmas. Turning
these results to a broader perspective, because Lorentzian
pulses have been identified to be the underlying physical
cause of the exponential spectrum, in both linear [16,17]
and toroidal geometry [18], this plasma-derived informa-
tion suggests that the mathematical generalization to com-
plex times used in studies [1,15] of deterministic chaos is a
representation of Lorentzian pulses emerging from the
chaotic dynamics. Specifically, the poles in the complex-
time plane associated with deterministic chaos come in
complex conjugate pairs, and power spectra arising from
deterministic chaos have the general form given in Eq. (2).
Although the connection to Lorentzian pulses has not been
made in deterministic-chaos experiments in fluid systems,
their presence can be seen in published time signals, such
as Fig. 2 of Ref. [9].

In summary, the generality of exponential spectra in
magnetized plasmas has been established by extensive
and detailed experimental evidence. The underlying con-
nections to deterministic chaos warrant incorporation into
contemporary theoretical developments.
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