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The estimation of the maximum wave run-up height is a problem of practical importance. Most of the

analytical and numerical studies are limited to a constant slope plain shore and to the classical nonlinear

shallow water equations. However, in nature the shore is characterized by some roughness. In order to take

into account the effects of the bottom rugosity, various ad hoc friction terms are usually used. In this

Letter, we study the effect of the roughness of the bottom on the maximum run-up height. A stochastic

model is proposed to describe the bottom irregularity, and its effect is quantified by using Monte Carlo

simulations. For the discretization of the nonlinear shallow water equations, we employ modern finite

volume schemes. Moreover, the results of the random bottom model are compared with the more

conventional approaches.
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The estimation of long wave run-up on a sloping beach
is a practical problem which attracts nowadays a lot of
attention due in part to the intensive human activity in
coastal areas. The main demand comes from coastal and
civil engineering but also from coastal communities which
are exposed to tsunami wave hazards [1]. Consequently, a
lot of effort is devoted to the development of fast and
accurate estimation methods of the wave run-up and hori-
zontal excursion over a sloping beach [2–5]. In general,
this problem is solved in simplified geometries (e.g., con-
stant slope beach) and in the framework of linear or non-
linear shallow water (NSW) equations. However, more
general situations may require the application of other
models and different numerical techniques (see, e.g.,
[6–9], and references therein).

In practice, the available data are always subject to some
uncertainties. For example, the bathymetry is known only
in a discrete number of scattered points, while in reality the
shores are characterized by some rugosity. The missing
information can be modeled by the inclusion of random
effects. These circumstances have led several authors to
consider water wave propagation in random media
[10–12]. In the present study, we model the natural beach
roughness by small random perturbations of the smooth
average bottom profile. The long wave dynamics are
described by the classical NSW equations. We note that
the dispersive effects could also be included (see [9]);
however, they do not modify qualitatively the results that
follows below. The main effect of the dispersion is a small
reduction of the maximum run-up height due to the wave
energy flux to shorter wavelengths.

Consider an incompressible perfect fluid layer bounded
below by the solid bottom dðxÞ and above by the free

surface �ðx; tÞ. In the present study, we are interested in
the long wave regime which is described by the NSW
equations:

Ht þ ðHuÞx ¼ 0; (1)

ðHuÞt þ
�
Hu2 þ g

2
H2

�
x
¼ gHdx � gHSf; (2)

where Hðx; tÞ ¼ dðxÞ þ �ðx; tÞ is the total water depth and
uðx; tÞ is the depth-averaged fluid velocity. The channel
bottom dðxÞ is assumed to be a sloping beach described by
the depth function dðxÞ ¼ d0 � tan�ðxþ ‘Þ, where � is
the constant bottom slope and ‘ is the half-length of the
physical domain. Parameters d0, ‘, and � are chosen so that
a dry sloping area is below the still water level (see
Table I). The term Sf is included to model some friction

effects, and it will be taken zero unless otherwise noted.
We consider the boundary value problem posed on the one-
dimensional interval I ¼ ½�‘; ‘�, where on the right

TABLE I. Various parameters used in this study. Note that
with the present choice of parameters d0 and g we solve the
governing equations (1) and (2) in the dimensionless form.

Parameter Value

Domain half-length L 17.0

Bottom slope tan� 0.06

Gravity acceleration g 1.0

Water depth at the left end, d0 1.0

Incoming wave amplitude a0 0.15

Incoming monochromatic wave frequency !0 0.2

Number of control volumes N 1000

Number of Monte Carlo runs M 1000
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boundary x ¼ ‘ we impose the so-called wall boundary
condition uð‘; tÞ ¼ 0 (in our simulations, the wave front
does not achieve this point), while on the left end x ¼ �‘
we generate an incoming wave of height �ð�L; tÞ ¼
�a0 sinð!0tÞH ðT0 � tÞ, where H ðtÞ is the Heaviside
step function and T0 ¼ 2�=!0 is the wave period. In other
words, we generate a shoreward-traveling, one-period
monochromatic leading depression wave. The values of
the various physical and numerical parameters used in this
study are given in Table I.

The interval I is divided into cells Ci¼½xi�ð1=2Þ;xiþð1=2Þ�
of length �xi ¼ xiþð1=2Þ � xi�ð1=2Þ, and xi ¼ 1

2 ðxi�ð1=2Þ þ
xiþð1=2ÞÞ denotes the midpoint of Ci, i ¼ 1; . . . ; N. Without

any loss of generality, we assume the partition of cells
T ¼ fCigNi¼1 is uniform. In order to model the bottom

roughness, we construct a random perturbation in the
following way. Let us fix an integer number r � 1 which
will be referred to as the regularity parameter. Then, on
each cell fCjrgmj¼1 � T , with m ¼ bNr c, we generate a nor-

mally distributed pseudorandom variable �j �N ð0; �2Þ,
where the parameter � characterizes the perturbation
magnitude since j�jj< 1:96 � � with probability 95%.

Constructed in this way, the random vector � ¼ f�jgmj¼1

is interpolated on the whole grid by using cubic splines,
for example, to obtain a particular realization of micro-
irregularities. The discrete bathymetry function becomes
di ¼ d0 � tan�ðxi þ ‘Þ þ �i on each cell Ci. Several real-
izations of the random bottom for various values of r are
shown in Fig. 1. If r ¼ 1, we obtain a white noise, while
increasing this parameter is equivalent to the application of
a spectral filtering operation.

The hyperbolic system of NSW equations is discretized
by using the finite volume method; cf. [9]. Specifically, we

use the characteristic flux approach [13] combined with the
uniformly nonoscillatory 2nd order space reconstruction
procedure [14]. The well balancing of the scheme is
achieved by applying the well known hydrostatic recon-
struction method [15]. The run-up algorithm description
can be found in Refs. [8,9]. For the time discretization we
use the 3rd order Bogacki-Shampine Runge-Kutta scheme
with adaptive time step selection.
Once the parameters � and r have been chosen, we can

generate a particular realization of the rough sloping beach
and solve the boundary value problem to determine the
maximum wave run-up. The shoreline motion of one par-
ticular realization with � ¼ 10�2 and r ¼ 1 is represented
in Fig. 2. For comparison, the shoreline behavior in the
idealized smooth bottom case is also represented in Fig. 2
with the dashed line. One can see that the main effect of the
bottom rugosity is the reduction of the maximum wave
run-up height Rmax. In this particular simulation, the wave
run-up has been reduced by a factor of 2 approximately.
Sometimes this effect is referred to as apparent diffusion;
cf. [12]. Intuitively, we can understand this outcome, since
a wave dissipates more energy due to the interaction with
these microirregularities.
One of the main questions we address here is to quantify

the run-up reduction when the bottom roughness varies.
Our approach consists of performing direct numerical
simulations of this process over random bottoms instead
of adding some ad hoc terms to model this roughness. We
will return to this point below. In probabilistic terms, we
would like to estimate the expectation EðRmaxÞ over all
possible realizations of the random bottom noise.
Since a random bottom perturbation is constructed in

discrete space, the dimension of the random parameters
vector � 2 Rm scales with the number of control volumes
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FIG. 1. A sample realization of random bottoms for
� ¼ 5� 10�2 and various values of the regularity parameter
r ¼ 1, 2, 4, 5, and 8 starting correspondingly from the top.
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FIG. 2. The shoreline motion in the case of a smooth shore (the
dashed line) and a particular realization of the random bottom
with � ¼ 10�2, r ¼ 1 (solid line).
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N in our spatial discretization of the interval I . More
precisely, m ¼ bN=rc, where r � 1 is the noise regularity
parameter introduced above. The discrete space in our
simulation is of dimension N, which is typically of the
order of 103 (see Table I). This value is imposed by the
accuracy requirements of our direct simulations, and this
rather high dimension is a limiting factor for the choice
of the expectation EðRmaxÞ numerical method estimation.
Popular nowadays, the polynomial chaos expansion
method does not apply if the number of random parameters
is typically greater than 2. The quasi Monte Carlo approach
fails for dimensions higher than 200 because of substantial
difficulties to generate a low discrepancy sequence of
random vectors of such a large dimension. Consequently,
we are limited to the standard Monte Carlo method, which
is not sensitive to the stochastic problem dimension.
However, we can apply a variance reduction method
described below.

In order to estimate EðRmaxÞ, we simulate M random
bottom realizations, and for each case j we compute nu-

merically the maximum run-up RðjÞ
max. We approximate

EðRmaxÞ by the mean SM :¼ 1
M

P
M
j¼1 R

ðjÞ
max. According to

the central limit theorem, we know that EðRmaxÞ belongs
to the interval ½SM � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M=M
q

; SM þ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M=M
q

�
with a 95% level of confidence, where �2

M
:¼ 1

M�1 �P
M
j¼1ðRðjÞ

max � SMÞ2 is an unbiased converging estimator

of the variance ofRmax. To reduce the size of the confidence
interval, we can either increase M (which requires more
computational time) or try to find a random variable with
mean EðRmaxÞ and variance smaller thanVarðRmaxÞ. We opt
for the second possibility—the so-called variance reduction
technique. SinceRmax can be seen as a functionRð�Þ, where
� follows a centered Gaussian law N ð0m;�2ImÞ, we can
use the adaptive importance sampling technique proposed
in Ref. [16]. This method uses the fact that 8 � 2 Rm,

E½Rð�Þ�¼E½Rð�þ�Þe�����ðj�j2=2Þ�. Then, one can con-
struct an algorithm which finds the parameter vector
�? minimizing the variance of Hð�; �Þ :¼ Rð� þ �Þ�
e�����ðj�j2=2Þ. Then, the average value EðRmaxÞ is approxi-
mated by �SM :¼ 1

M

P
M
j¼1 �Hð�j�1; �jÞ, where f�jgMj¼1 is a

sequence converging to �?. We refer to Ref. [16], Sec. 2.2,
for theoretical results on the central limit theorem in this
adaptive case where the random variables are not indepen-
dent anymore. This algorithm allows us to reduce the vari-
ance by a factor of 2 approximately. In our computations the
confidence interval length has never exceeded 0.5% of the
corresponding maximum run-up value with parameter M
specified in Table I. The probability density function of the
Rmax distribution for r ¼ 1 and two values of � (10�3

and 10�2) are depicted in Fig. 3.
The Monte Carlo simulation results are presented in

Figs. 4 and 5. The dependence of the maximum run-up
Rmax value on the roughness magnitude � for two fixed

values of the noise regularity r ¼ 1 and 6 is shown in
Fig. 4. On the other hand, the dependence of Rmax on the
regularity parameter r for several fixed values of � is
represented in Fig. 5. We can see that the bottom roughness
reduces significantly the wave run-up height while the
noise regularization has an antagonistic effect.
Since stochastic Monte Carlo simulations of the bottom

rugosity are computationally expensive, various friction
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FIG. 3. Probability density distribution for � ¼ 10�3 [left
image, EðRmaxÞ ¼ 0:780 88; 5% and 95% quantiles are equal
to 0.777 34 and 0.784 16, respectively] and � ¼ 10�2 [right
image, EðRmaxÞ ¼ 0:422 81; 5% and 95% quantiles are equal
to 0.378 57 and 0.462 61, respectively]. Note the difference in the
vertical scales and in the horizontal extent of two distribution
functions.
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FIG. 4. Maximum run-up value as a function of the perturba-
tion characteristic magnitude � for the irregular case r ¼ 1
(dashed line) and the regularized noise r ¼ 6 (solid line). For
comparison, the red dash-dotted line represents the maximum
run-up value for the smooth bottom case.
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ad hoc terms are used to model these effects. The following
examples can be routinely found in the literature:

(i) Chézy law.—Sf ¼ cf
ujuj
H , where cf is the Chézy

friction coefficient.

(ii) Darcy-Weisbach law.—Sf ¼ �ujuj
8H , where � is the

resistance value determined according to the

Colerbrook-White relation: 1=
ffiffiffiffi
�

p ¼ �2:03 log�
ð cf
14:84HÞ.

(iii) Manning-Strickler law.—Sf ¼ c2f
ujuj
H4=3 , where cf is

the Manning roughness coefficient.

The friction coefficient cf measures the bottom roughness

as the parameter � in our random bottom roughness con-
struction. Consequently, we can ask the same question:
How does the maximum run-up value depend on the fric-
tion coefficient cf if this term is incorporated into the

model? We perform a series of deterministic numerical
simulations for various values of cf and the maximum

wave run-up Rmax being measured. The numerical results
are presented in Fig. 6. We can see that the Chézy and
Darcy-Weisbach laws provide a strong friction which re-
duces considerably the maximum run-up height. However,
the Manning-Strickler law shows qualitatively a very simi-
lar behavior to the results predicted by our stochastic
model in the nonregularized case r ¼ 1.

In the present study, we considered the long wave run-up
problem over rough bottoms. Specifically, we proposed a
stochastic model to mimic the natural bottom roughness.
Using the Monte Carlo variance reduction technique,
we quantified the maximum wave run-up behavior for
various practically important values of the noise magnitude
and regularity � and r, respectively. The maximum run-up
is monotonically decreasing as the bottom roughness

parameter � increases. However, this apparent dissipative
effect might be drastically reduced when the noise regu-
larity r is increased. Namely, in our simulations we ob-
served the difference of a factor of about 2 between the
maximum run-up on the irregular (r ¼ 1) and regularized
(r ¼ 6) perturbations. These results indicate that the regu-
larity parameter has to be taken into account in some way
while designing coastal protecting structures. Since the
recent field survey by Fritz et al. [17], it has been known,
for example, that coastal forests do not provide effective
damping to tsunamis.
Moreover, our stochastic computations were compared

to several simulations using classical friction terms rou-
tinely used to model the bottom rugosity. A very good
qualitative agreement (for r ¼ 1) was obtained with the
Manning-Strickler law, while the Chézy and Darcy-
Weisbach laws provide too strong momentum damping.
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