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We study the limiting behavior of large-amplitude standing waves on deep water using high-resolution

numerical simulations in double and quadruple precision. While periodic traveling waves approach

Stokes’s sharply crested extreme wave in an asymptotically self-similar manner, we find that standing

waves behave differently. Instead of sharpening to a corner or cusp as previously conjectured, the crest tip

develops a variety of oscillatory structures. This causes the bifurcation curve that parametrizes these

waves to fragment into disjoint branches corresponding to the different oscillation patterns that occur. In

many cases, a vertical jet of fluid pushes these structures upward, leading to wave profiles commonly seen

in wave tank experiments. Thus, we observe a rich array of dynamic behavior at small length scales in a

regime previously thought to be self-similar.
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Singularities in fluid mechanics are generally expected
to be asymptotically self-similar [1]. These can be dynamic
singularities, such as bubble pinch-off [2] or wave breaking
[3], or parametric singularities, where a family of smooth
solutions terminates at a singular solution. A famous ex-
ample of the latter type was posed by Stokes in 1880, who
used an asymptotic expansion of the stream function to
argue that the periodic traveling water wave of greatest
height should have an interior crest angle of 120�. This
crest angle has been confirmed in numerous computational
studies [4] as well as theoretically [5]. The asymptotic
behavior of the almost highest traveling wavewas analyzed
by Longuet-Higgins and Fox [6,7].

Because genuine dynamics are involved, existing nu-
merical methods have been unable to maintain the accu-
racy needed to fully explore the limiting behavior of
large-amplitude standing waves. As a result, Penney and
Price’s conjecture [8] that a limiting standing wave exists
and develops 90� interior crest angles each time the fluid
comes to rest has remained open since 1952. Such a
singularity would be both dynamic and parametric. The
standing waves in question are spatially periodic and have
zero impulse (horizontal momentum), maintaining even
symmetry for all time. They are also temporally periodic,
alternately passing through two zero-velocity rest states of
maximal potential energy.

Small-amplitude standing waves of this type were pro-
ved to exist by Iooss, Plotnikov, and Toland [9]. Larger-
amplitude waves were computed by Mercer and Roberts
[10], who discovered that the wave steepness (half the
crest-to-trough height) does not increase monotonically
over the entire one-parameter family of standing waves.
They proposed using (downward) crest acceleration, Ac,
as a continuation parameter instead. We reproduce (and
extend) their plot of wave steepness versus crest accelera-
tion in Fig. 1. Since pressure increases with depth near the

free surface [11], Euler’s equations imply that Ac cannot
exceed g, the acceleration of gravity.
Taylor [12] performed wave tank experiments and

confirmed that large-amplitude standing waves do form
reasonably sharp crests close to 90 degrees. A further
increase in amplitude caused the waves to splash and
become unstable in the transverse direction. Grant [13]
and Okamura [14] have written theoretical papers to sup-
port the 90� conjecture. Okamura also performed numeri-
cal experiments [15,16] to back this claim. Extrapolating
from numerical solutions, Mercer and Roberts [10] specu-
lated that the limiting crest angle might be as sharp as 60�.
Schultz et al. [17] also predicted a limiting wave profile
with a crest angle smaller than 90� and offered the possi-
bility that a cusp may form instead of a corner.
Our objective is to challenge the assumption that stand-

ing waves behave as traveling waves in their approach
of an ‘‘extreme’’ limiting wave. If there is no limiting

-0.5

 0

 0.5

 1

0 π 2π

-0.5

 0

 0.5

 1

0 π 2π

crest acceleration,

w
av

e 
st

ee
pn

es
s,

ABA

B  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  .1  .2  .3  .4  .5  .6  .7  .8  .9  1

FIG. 1. Bifurcation diagram and selected standing waves, plot-
ted at equal time slices over a quarter period. The wavelength is
taken to be 2�, and g ¼ 1. The crest tip sharpens as Ac increases
over the range 0 � Ac � 0:985, where previous numerical stud-
ies are reliable. In particular, the curvature at the crest is visibly
higher for solution B than for A.
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wave profile, then a local analysis suggesting a geometric
singularity (corner or cusp) is inapplicable.

The equations of motion for a two-dimensional irrota-
tional ideal fluid of infinite depth are

�t ¼ �y � �x�x; (1a)

�t ¼ P½�y�t � 1
2jr�j2 � g��; (1b)

where �ðx; tÞ is the upper boundary of the evolving fluid
and �ðx; tÞ ¼ �ðx; �ðx; tÞ; tÞ is the restriction of the veloc-
ity potential to the free surface. Both �ðx; tÞ and �ðx; tÞ
are assumed to be 2� periodic in x. In (1b), P is the
orthogonal projection to zero mean. This equation comes
from �t ¼ �t þ�y�t and the unsteady Bernoulli equa-

tion �t þ 1
2 jr�j2 þ p

� þ gy ¼ cðtÞ, where the arbitrary

constant cðtÞ is chosen to preserve the mean of �ðx; tÞ.
To evaluate the right-hand side of (1) for the purpose of

time stepping, we use a boundary integral collocation
method. Details will be given elsewhere [18]. Briefly, we
represent� at a point z ¼ xþ iy in the fluid using a double
layer potential. Suppressing t in the notation and summing
over periodic images [19], the result is

�ðzÞ ¼ 1

2�

Z 2�

0

~Kðz; �Þ�ð�Þd�; (2)

where ~Kðz; �Þ ¼ Imf� 0ð�Þ2 cotðz��ð�Þ
2 Þg. A prime represents

a derivative with respect to �, and

�ð�Þ ¼ �ð�Þ þ i�ð�ð�ÞÞ (3)

is a parametrization of the curve. The change of variables
x ¼ �ð�Þ allows for smooth mesh refinement near the crest
tip. Letting z approach the boundary, we obtain a second-
kind Fredholm integral equation for �:

�ð�ð�ÞÞ¼�ð�Þ
2

þ 1
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��	
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��
:

(4)

Once �ð�Þ is known, we compute �x and �y on the

boundary from (2), closing the system (1); see [18].
We discretize space and time adaptively to resolve the

solution as it becomes increasingly singular. Time is di-
vided into 
 segments �lT, where �1 þ � � � þ �
 ¼ 1=4
and T is the current guess for the period. On segment l, we
fix the number of (uniform) time steps, Nl, the number of
spatial grid points, Ml, and the function

�lð�Þ ¼
Z �

0
Elð	Þd	; Elð�Þ ¼ 1� P½Alsin

4ð�=2Þ�;

which controls the grid spacing in the change of variables
x ¼ �lð�Þ. Al is a parameter chosen between 0 (uniform
spacing) and 8=5, the value where �lð�Þ ceases to be a
diffeomorphism. As before, P projects out the mean.

To compute standing waves, we use the Levenberg-
Marquardt method [20], a trust-region algorithm for non-
linear least squares problems, to minimize

fðcÞ ¼ 1

4�

Z 2�

0
�ðx; T=4Þ2dx; c 2 Rnþ1; (5)

where c contains the period as well as the nonzero Fourier
modes of the initial conditions; i.e., T ¼ c0 and

�̂ kð0Þ ¼ cjkj ðkoddÞ; �̂kð0Þ ¼ cjkj ðkevenÞ: (6)

Here, k ranges from �n to n, excluding 0, and n is chosen
to be close to 1

4M1, leaving the upper half of the spectrum

of � and� to be zero initially. A symmetry argument [10]
shows that driving the velocity potential to zero at time T=4
with initial conditions of the form (6) leads to a standing
wave with period T and zero impulse. The method fails if f
reaches a nonzero local minimum.
We discretize (5) with spectral accuracy by redefining

f ¼ 1
2 r

Tr, where r 2 Rm, m ¼ M
, and

ri ¼ �ð�
ð�iÞ; T=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
ð�iÞ=m

q
; �i ¼ 2�i=M
:

The square root comes from dx ¼ E
ð�Þd�. Typically,
4n � m � 10n. To track families of solutions, one of the
ck is chosen as a continuation parameter [21] and elimi-
nated from the search space when minimizing f. When a
turning point is detected in this ck, we switch to a different
one; see [18,19] for details. The Jacobian Jik ¼ @ri=@ck is
computed by solving the linearization of (1) about the
current solution to obtain @

@ck
�ðx; T=4Þ. This can be paral-

lelized very efficiently [18], dramatically increasing the
resolution we are able to achieve.
Our results are summarized in Figs. 2 and 3. First, we

corroborate the result of Mercer and Roberts [10] that wave
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FIG. 2. Thebifurcationcurve inFig. 1 becomes fragmented in the
range 0:985<Ac < 1, where previous numerical studies break
down. The labels A–O correspond towave profiles shown in Fig. 3.
The turningpoint inwave steepness atC, the lackofmonotonicity in
Ac, the complicated branching structure, and the existence of
standing waves with h > 0:620 17 were not previously known.
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steepness, h, reaches a local maximum of hmax ¼ 0:620 17
at Ac ¼ 0:926 31. (The values reported in [10] were 0.6202
and 0.9264.) Using quadruple precision, we are able to
compute hmax to 26 digits of accuracy and the correspond-
ing Ac to 13 digits. Okamura [15], who found that h
increases monotonically all the way to Ac ¼ 1, was incor-
rect. Second, we find that crest acceleration has turning
points at Ac ¼ 0:991 35 and 0.990 40. This is a surprise, as
Ac was chosen as a continuation parameter in [10] to avoid
the lack of monotonicity in h. In our work, h and Ac are
plotted parametrically as functions of whichever ck is
currently used as a continuation parameter. Finally, in the
process of tracking this primary branch of solutions, we
discovered several other families of standing waves. Each
of these branches was tracked in both directions until the
computations became too expensive to continue further
with the desired accuracy, f� 10�26 in double precision.

The standing waves that constitute these branches look
qualitatively similar to each other in the large, where they
closely resemble the photographs from Taylor’s wave tank
experiments [12]. However, as illustrated in Fig. 3, solu-
tions on different branches feature different oscillation
patterns in the vicinity of the crest tip. The rapid increase
in wave steepness from solution E to solution O in Fig. 2
corresponds to a vertical jet of fluid that forms near the
crest before the standing wave reaches its rest state. The
resulting protrusion causes the maximum slope to be much
larger than 1 for most of these solutions. Taylor photo-
graphed similar structures at the crest in his wave tank
experiments. Schultz et al. [17] argued that surface tension
was responsible for these protrusions, but we find that
they occur even without surface tension. Comparing
solutions A–E on the primary branch, we see that
solutions eventually flatten out at the crest and become

oscillatory rather than sharp. Figure 4 provides further
evidence that these oscillations grow large enough to pre-
vent this family of solutions from approaching a limiting
wave profile in an asymptotically self-similar fashion.
Regarding accuracy, our method is spectrally accurate

in space, 8th or 15th order in time [18], and quadra-
tically convergent in the search for a minimizer of f in
(5). We achieve robustness by formulating the shooting
method as an overdetermined nonlinear least squares
problem. If the numerical solution loses resolution, the
equations riðcÞ ¼ 0 become incompatible with each other
and the objective function f ¼ 1

2 r
Tr grows accordingly.

This prevents the method from giving misleading over-
estimates of the accuracy of the standing waves it finds. For
example, we recomputed solution O of Fig. 3 in quadruple
precision on a finer mesh ((Ml ¼ f6144; 7500; 8192; 9216g,
�l ¼ f0:1; 0:3; 0:4; 0:2g, and Al ¼ f0; 1:043; 1:405; 1:476g),
using the initial conditions obtained by minimizing f in
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FIG. 3. Evolution of standing waves and velocity potential over a quarter period. (Top left) Solutions A–O in Fig. 2 are plotted on top
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disconnections in the bifurcation diagram. Solutions D–O have 350–600 grid points between 0:99� and 1:01�. With at most 3 grid
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FIG. 4. Breakdown of self-similarity on the primary branch.
When lengths are rescaled so the radius of curvature at the crest
is 1, the slopes of solutions A–C have similar shapes. In the
traveling case (Fig. 5), these rescaled slopes would approach a
limiting curve. But, for standing waves, oscillations develop, and
a limiting curve does not emerge.
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double precision. The more accurately computed value
of f is 8:6� 10�27, which is 34% smaller than predicted
in double precision. This level of inaccuracy in the pre-
dicted error is acceptable, as driving �ðx; T=4Þ to zero
entails eliminating as many significant digits as possible.
For solution A, we repeated the minimization in quadruple
precision, causing f to decrease from 2:2� 10�28 to
2:1� 10�60. In addition to f, we monitor energy conser-
vation and the decay of Fourier modes at various times to
ensure that � and� remain resolved to machine precision;
see [18] for more details.

It is instructive to compare our results to the traveling
wave case. Longuet-Higgins and Fox [6,7] showed that
periodic traveling waves are asymptotically self-similar in
two scaling regimes. If the wavelength, L, is held fixed as
the crest tip sharpens, the limiting wave profile has a 120�
corner. This is the outer solution of [7], predicted by
Stokes and proved to exist in [5]. If, instead, the fluid
velocity at the crest remains fixed as the wavelength goes
to infinity, the limiting wave profile is shown in Fig. 5. This

inner solution crosses the asymptotes y ¼ �x=
ffiffiffi
3

p
infi-

nitely often [6], implying that traveling waves approach
Stokes’s limiting wave in an oscillatory manner, rather than
monotonically, with L fixed.

The oscillations in the standing wave case are of a
completely different nature. No choice of scaling will
cause the curves in Fig. 4 to approach a limiting inner
solution. We believe these oscillations are caused by reso-
nant modes in the two-point boundary value problem (1)
with boundary conditions �ðx;�T=4Þ ¼ 0, treating T as a
bifurcation parameter. A resonant mode is a perturbation
that nearly satisfies the linearized boundary value problem.
Such modes can be strongly excited in the process of
computing standing waves, especially in finite depth
[18,22,23]. Disconnections in the bifurcation diagram
seem to occur when a resonant mode can be excited with
more than one amplitude. For example, solutions I and J in
Fig. 3 both contain a secondary, higher-frequency standing
wave (the resonant mode) superimposed on a low-
frequency carrier wave. The secondary wave sharpens the

crest at J and flattens it at I, being 180 degrees out of phase
from one branch to the other.
We conclude that resonance is responsible for oscilla-

tions and trumps self-similarity in determining the dynam-
ics of standing waves at small scales. This shows that,
although under-resolved numerical simulations may ex-
hibit self-similar dynamics, as happened in [15], the true
dynamics may be more complex. Recent work on singu-
larity formation in free surface flow problems, such as
droplet and bubble pinch-off [1,2] and wave breaking [3],
may also benefit from higher-resolution simulations, which
could reveal new aspects of their dynamics.
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