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We present the experimental observation of bound states in the continuum. Our experiments are carried

out in an optical waveguide array structure, where the bound state (guided mode) is decoupled from the

continuum by virtue of symmetry only. We demonstrate that breaking the symmetry of the system couples

this special bound state to continuum states, leading to radiative losses. These experiments demonstrate

ideas initially proposed by von Neumann and Wigner in 1929 and offer new possibilities for integrated

optical elements and analogous realizations with cold atoms and optical trapping of particles.
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A general quantum system with a finite potential well
naturally has bound states and unbound continuum states,
whose energies lie below or above the continuum threshold
(the asymptotic value of the potential at infinity), respec-
tively. It can have, however, another kind of state: a bound
state in the continuum (BIC). Historically, BICs were first
proposed in 1929 [1], soon after the emergence of quantum
mechanics. A BIC is a counterintuitive eigenmode of the
system with energy above the continuum threshold, but
which is nevertheless localized and square integrable. BICs
were identified for specific potential structures, and can
generally be described as resonance states of zero width,
i.e., leaky modes (localized states with finite lifetime due to
coupling to continuum states) with zero leakage [2].
von Neumann’s and Wigner’s method for finding a poten-
tial capable of supporting a BIC was to assume a wave
function with an envelope that decays in space and is
square integrable, and then tailor a suitable potential whose
bound eigenmode is this wave function [1]. Such ‘‘custom
made’’ potentials are oscillatory in space while decaying as
a power law (as their bound state does). Almost 50 years
passed until the issue of BIC-supporting potentials was
addressed again, this time by Stillinger and Herrick [3],
who implemented Wigner’s idea in a large variety of
potentials, and extended it to a two-electron wave function.
Another approach for designing potentials that can support
BICs was proposed following the discovery of the
so-called ‘‘resonance states’’ in quantum systems.
Resonance states are localized states with a finite lifetime,
whose energies lie in the continuum [4]. These states,
albeit localized, are not bound states; rather, they are
constructed from continuum states; hence, they eventually
decay. Under some specific parameters, interference be-
tween resonance states can yield a zero-width resonance
[2,5], resulting in a state with no decay at all: a BIC. More
recently, it has been proposed to construct BICs that are
decoupled from all continuum states by virtue of symmetry
solely, as suggested for ring structures carrying ballistic

current [6] and for quantum billiards [7]. Interestingly,
even though the BIC ideas date back to 1929, BICs in
quantum systems have never been demonstrated. The ex-
periment closest to BIC in quantum systems was the work
of Capasso’s group in 1992 [8], demonstrating an elec-
tronic bound state with energy far above the barrier height
in a one-dimensional semiconductor superlattice (an array
of quantum wells). However, that work, albeit pioneering,
did not demonstrate a true BIC, because the state was
actually a defect mode residing in a minigap formed by
Bragg reflections and not in a continuum of states.
Accordingly, the title of that paper is "Observation of an
Electronic Bound State above a Potential Well," not claim-
ing a BIC [8]. In a similar vein, we note another observa-
tion of a state in the continuum which was localized in one
dimension but not in the other [9]. That two-dimensional
scheme of ‘‘grating-mediated waveguiding’’ supports a
guided mode immersed in the continuum (Bloch modes
of the grating). However, that mode is localized, funda-
mentally, in one dimension only, while in the other dimen-
sion it must be an extended state. As such, it carries infinite
power, and is not a true bound state in the continuum.
Altogether, to this day, BICs have never been observed in
any system, quantum or classical.
The concept of BICs is based on interference, and hence

not restricted to quantum systems. Rather, the idea of a BIC
applies in principle to any type of wave system. Notably, in
the past decade, the analogy between optical systems in the
paraxial regime and general (one-dimensional or two-
dimensional) quantum systems has gained much attention.
This analogy has facilitated the experimental observation
of a variety of phenomena that are very difficult to observe
in quantum solids [10]. Examples range from Bloch oscil-
lations [11] and Zener tunneling [12] to Shockley states
[13], the Zeno effect [14], dynamic localization [15] and
Anderson localization [16]. One of the nicest features of
carrying out such experiments in the classical domain of
spatial optics is the ability to directly and continuously
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image the wave function as it evolves [10–16]—a feature
which is notoriously difficult to achieve in quantum sys-
tems, where one typically measures integrated quantities
such as conductance through a potential or scattering from
it. These arguments suggest employing optics for the ob-
servation of bound states in the continuum.

Here, we present the experimental observation of bound
states in the continuum: BICs. Noticing the elegancy of the
notion ‘‘BIC by virtue of symmetry,’’ we have chosen this
path, and employ an optical waveguide array structure,
where we use symmetry to decouple the BIC from all
continuum states. Namely, our BIC is an antisymmetric
localized mode inside a continuum of symmetric extended
states. To show that the BIC is indeed immersed in a
continuum, we gradually break the symmetry of the struc-
ture by adding a refractive index gradient. Breaking the
structural symmetry allows coupling to the continuum,
manifested in light escaping to neighboring waveguides
and spreading into the array. Such concepts can be carried
over to other systems, such as matter waves, acoustic
waves and other systems governed by wave interference.
Moreover, such ideas can be used as a means to manipulate
optical traps for small particles.

The structure we use to implement these ideas (Fig. 1) is
a one-dimensional array of single-mode optical wave-
guides, with two additional waveguides above and below
the central waveguide of the array. The refractive index
profile of the waveguides is a sixth-order super-Gaussian,
with a width of 4 �m in the horizontal direction and
11 �m in the vertical direction [17]. The maximal change
in the refractive index is 8� 10�4 with a bulk refractive
index of 1.45 (fused silica). The horizontal distance be-
tween the waveguides’ centers in the array is 20 �m, and
the vertical distance is 15 �m. The BIC supported by this
structure is localized in the two waveguides above and
below the array, and its electric field has a phase difference
of � between the two waveguides. The BIC is antisym-
metric in the vertical direction, whereas all the eigenmodes

of the array are symmetric in that direction. As such, the
BIC is decoupled from all the array modes by virtue of
symmetry only.
The slowly varying amplitude c ¼ c ðx; y; zÞ of the field

evolving in this structure is governed by [10]

�
i@z þ 1

2k
ð@2x þ @2yÞ þ k�n

n0

�
c ¼ 0 (1)

where z is the propagation axis, x, y are the transverse
dimensions, k is the wave number, n0 is the bulk refractive
index and �n is the spatial variation of the refractive index
defining the structure. Let us analyze the eigenmodes of
this structure, consider first the homogeneous array without
the two additional waveguides. The array is periodic in x;
hence, its eigenmodes are Bloch modes grouped into bands
and separated by gaps. The calculated continuum of Bloch
modes is shown in Fig. 2. Note that these modes are all y
symmetric.
Next, consider the vertical structure of the three central

waveguides only (without the horizontal array) and find
their eigenmodes. This structure supports three bound
modes: the first and the third are y symmetric, where
a proper choice of parameters (spacing between wave-
guides) shifts their propagation constants into the gaps
above and below the band, making them ordinary bound
states (defect modes). On the other hand, the second mode
is y antisymmetric. Importantly, the propagation constant
of this second mode resides inside the continuous band of
the array modes. However, this antisymmetric mode

FIG. 1. Refractive index profile of the structure used for the
demonstration of a BIC. The structure comprises a one-
dimensional array of 51 equidistant waveguides in the x direc-
tion and two additional waveguides above and below the array.
The size of each waveguide is 4 �m in the horizontal direction
and 11 �m in the vertical direction.
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FIG. 2 (color online). Calculated dispersion relation of the
waveguide array (solid curve) indicating a continuum of ex-
tended states (Bloch modes) in the x direction, comprising
the first band of the array (gray). All of these modes are y
symmetric. The circles indicate the propagation constants of the
three discrete bound states of the three vertical waveguides in
the center of the array. The two bound states above and below the
band are y symmetric, but they are disconnected from the band
because they reside in the gaps above and below the band,
thereby forming ordinary bound states (defect modes). The
central discrete state is immersed in the continuous band, but
because it is antisymmetric in the vertical direction it is de-
coupled from the band, thereby forming a BIC.
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cannot couple to the symmetric modes of the array since
the refractive index profile is also y symmetric. Hence, the
second mode is a true BIC. In fact, this second mode
remains within the band for a wide range of parameters:
the splitting between the bound states of these three iden-
tical central waveguides due to their close proximity
mainly affects the separation of the symmetric modes,
whereas the propagation constant of the antisymmetric
mode stays close to that of an unperturbed waveguide,
which under the tight binding approximation is in the
middle of the band [18]. The coupling between the anti-
symmetric second mode c 2ðx; y; zÞ ¼ �c 2ðx;�y; zÞ and
the band of symmetric continuum states �ðx; y; zÞ ¼
�ðx;�y; zÞ can be calculated using the overlap integral,
which for the given symmetric index profile �nðx; y; zÞ ¼
�nðx;�y; zÞ yields:

C / hc 2j�nj�i ¼ 0: (2)

Consequently, the antisymmetric mode is decoupled from
all Bloch modes of the array. It is therefore a BIC.

Our experiments are conducted in a waveguide system
fabricated in fused silica by femtosecond direct laser writ-
ing [19]. Our sample is constituted of a one-dimensional
array of 51 waveguides, plus the two additional wave-
guides (one above and one below), as shown in Fig. 1.
Since the array is finite, the number of modes in the band is
equal to the number of waveguides in the array, namely,
51. However, this discretization does not affect our experi-
ment, because for the propagation length (of 10 cm) in our
sample, two adjacent modes will acquire a relative phase of
less than�=10. Hence, for all practical purposes the modes
are organized in a continuous band. The propagation con-
stant of the BIC is designed to reside in the middle of the
band. Under the parameters of our sample, the fabrication
accuracy, and the optical wavelength, we find that the BIC
is situated near the middle of the band—far from the band
edges. Likewise, we find that the maximum possible dif-
ference between the propagation constants of the BIC and
of the closest Bloch mode is such that the maximum
relative phase these modes can acquire in our sample is
�=20. Thus, the finite extent of the array and the worst case
scenario in terms of fabrication accuracies still hold that
the propagation constant of the BIC effectively coincides
with one of the mid-band Bloch modes of the array.

We prepare the antisymmetric BIC mode by passing half
of a Gaussian laser beam through a microscope slide cover-
slip, tilted at an angle giving rise to a phase difference of an
odd multiple of�, with respect to the phase acquired by the
other half of the beam propagating in air. The tilt angle is
kept close to the Brewster angle, so that reflections would
not cause an imbalance in light intensity between the two
halves of the beam. We launch the antisymmetric mode
into the waveguide structure by overlapping the two lobes
with the waveguides above and below the array, thus
preventing the excitation of the central waveguide and

the associated symmetric modes. Observing the optical
intensity distribution at the output facet of the structure
[Fig. 3(a)] clearly shows the bound (guided) nature of the
antisymmetric state: light does not escape from the central
waveguides into the array, despite the fact that the propa-
gation constant of this antisymmetric mode is immersed in
the continuous band of Bloch modes of the array.
Since the decoupling of the BIC from the continuum is

solely based on symmetry, breaking this symmetry should
yield coupling of the antisymmetric state to the continuum.
In order to gradually break the vertical symmetry, we
introduce a vertical refractive index gradient by heating
the top side of the sample while cooling the bottom. The
thermal response of the host material translates the thermal
profile into a refractive index profile [20]. Upon activation
of the thermal gradient, we observe light escaping from the
three central waveguides [Fig. 3(b)] [21]. The amount of
light coupled into the array increases monotonically with
the strength of the gradient. The light escaping into the
array forms two lobes with their maxima at �11 wave-
guides away from the center. Comparing with simulations
proves that this occurs only when the initial state (zero
gradient) is in the mid-band region. Figure 4 shows the
optical power emerging from the array (after escaping from
the three vertical waveguides), measured at the output
facet, as a function of the temperature gradient. This
demonstrates conclusively that the BIC in our structure is
mediated solely by virtue of symmetry.
Numerical calculations (using a standard split-step

Fourier transform) reveal that, for small temperature gra-
dients, the power in the array grows in a parabolic fashion
(solid curve in Fig. 4). This result can also be obtained
analytically by calculating the coupling constant per-
turbatively. The refractive index change induced by the
thermal gradient is �nðyÞ ¼ K�Ty, when K is a constant
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FIG. 3 (color online). Light intensity at the output plane of the
structure, following proper excitation of the BIC. (a) Light
intensity at the output plane when the structure is fully y
symmetric. Clearly, no light is leaking into the array. (b) Light
intensity at the output plane when the refractive index gradient is
introduced by a 30 K temperature gradient across 1 mm (distance
between upper and lower thermal contacts). Clearly, the broken
symmetry mediates leakage of light into the array.
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representing the response of the refractive index to the
temperature change. The optical power P escaping from
the antisymmetric state into the array is given by

Pð�TÞ / jCj2 / jhc 2jnðx; yÞj�ij2 / �T2: (3)

This trend is nicely reflected at the lower part of the curve
in Fig. 4, as long as the perturbative approach is valid.

In conclusion, we proposed and realized a two-
dimensional waveguide array structure supporting a bound
state immersed in a continuum of states. The BIC is
decoupled from the continuum by virtue of symmetry
only. Indeed, we demonstrated that breaking the symmetry
results in coupling to the continuum, which drains the
power out of that mode. Our experiments constitute the
first experimental demonstration of a bound state in
the continuum, the two-dimensional realization of the
concept envisioned by von Neumann and Wigner in
1929. This work has implications on a variety of areas
in optics and beyond, arising from the fact that symmetry
breaking immediately transforms the BIC into a leaky
mode whose lifetime can be controlled with great sensi-
tivity. Examples range from efficient optical modulators to
quantum-confined structures offering sensitive control
over injection of charge carriers and experiments with
cold atoms and matter waves. In a similar vein, using
symmetry to control a BIC offers sensitive control over
optical traps, where altering the symmetry acts as a means
to manipulate the strength of interaction between the par-
ticles and external surrounding.
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FIG. 4 (color online). Power coupled into the continuum states
(array modes) as a function of the applied thermal gradient
across the structure. The blue dots represent the experimental
data, while the red line shows the simulation results.
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