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Nonperturbative electron-positron pair creation (the Schwinger effect) is studied based on the Dirac-

Heisenberg-Wigner formalism in 1þ 1 dimensions. An ab initio calculation of the Schwinger effect in the

presence of a simple space- and time-dependent electric field pulse is performed for the first time,

allowing for the calculation of the time evolution of observable quantities such as the charge density, the

particle number density or the total number of created particles. We predict a new self-bunching effect of

charges in phase space due to the spatial and temporal structure of the pulse.
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Introduction.—The vacuum of quantum electrodynam-
ics (QED) is unstable against the formation of many-body
states in the presence of an external electric field, mani-
festing itself as the creation of electron-positron pairs
[1–3]. This effect has been a long-standing but still unob-
served prediction as the generation of near-critical field
strengths Ecr � 1018 V=m has not been feasible so far.
Because of the advent of a new generation of high-intensity
laser systems such as the European XFEL or the extreme
light infrastructure (ELI), this effect might eventually
become observable within the next decades.

Previous investigations of the Schwinger effect in the
presence of time-dependent electric fields [4–14], space-
dependent electric fields [15–19] as well as collinear
electric and magnetic fields [20–22] led to a good under-
standing of the general mechanisms behind the pair crea-
tion process by now. However, realistic fields of upcoming
high-intensity laser experiments showing both spatial and
temporal variations have not been fully considered yet.
Only recently it became possible to study the Schwinger
effect in such realistic electric fields owing to recent theo-
retical progress as well as due to the rapid development of
computer technology. Specifically, the Dirac-Heisenberg-
Wigner phase-space formulation of QED in the presence of
an external electric field [23–26] (DHW formalism) has
attracted interest again [27–29]. It provides a real-time
nonequilibrium formulation of the quantum production
process. Also, a one-to-one mapping between the DHW
function (phase-space formalism) and the one-particle
distribution function (quantum kinetic formalism) exists
in the limit of a spatially homogeneous, time-dependent
electric field.

The Schwinger effect in the presence of an arbitrary
spacetime-dependent electric field is properly described
by the DHW formalism in the form of a partial differential
equation (PDE) system for the irreducible components of
the DHW function. The numerical solution of the PDE
system allows for the calculation of any observable quan-
tity in terms of the irreducible components.

In the present work, we consider a simple model for a
subattosecond high-intensity laser pulse in standing wave
mode with finite extension. In the focus of the beam, pair
production along the direction of the electric field gives the
dominant contribution to the Schwinger effect. Ignoring
particle momenta orthogonal to this dominant direction,
the system reduces to a 1þ 1 dimensional setting, which is
studied for the first time here and solved numerically [30].
Formalism.—Following the fundamental work of [24],

we start with the gauge-invariant equal-time commutator
of two Dirac field operators

�ðx; y; tÞ :¼ Uðx; yÞ½ ��ðx� y=2; tÞ;�ðxþ y=2; tÞ�; (1)

with x denoting the center-of-mass and y the relative
coordinate. Here, the Wilson-line factor which ensures
gauge invariance is chosen along a straight line

U ðx; yÞ ¼ exp

�
�ie

Z 1=2

�1=2
d�Aðxþ �y; tÞy

�
: (2)

The vector potential Aðx; tÞ is treated as classical mean
field; i.e., photon fluctuations are neglected. This approxi-
mation is well justified for the pair-production process in
QED. Tree-level radiation reactions which might play a
sizable role for strong fields according to recent investiga-
tions [31–33] are also neglected in this work.
Taking the vacuum expectation value h�j�ðx; y; tÞj�i,

we trade y for a kinetic momentum variable p by a Fourier
transformation. This defines the DHW function

W ðx; p; tÞ :¼ 1

2

Z
dye�ipyh�j�ðx; y; tÞj�i: (3)

Because of the fact that W ðx; p; tÞ is in the Dirac algebra,
it may be decomposed in terms of its Dirac bilinears

W ðx; p; tÞ ¼ 1
2½Sþ i�5Pþ ��V��; (4)

with irreducible components transforming as scalar
Sðx; p; tÞ, pseudoscalar Pðx; p; tÞ and vector V�ðx; p; tÞ.
For brevity, these components will later on collectively
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be denoted asWðx; p; tÞ. The derivation of the correspond-
ing equations of motion follows that in 3þ 1 dimensions
[24,30] and yields the following hyperbolic PDE system�

@

@t
þ �

�
S� 2pP ¼ 0; (5)

�
@

@t
þ�

�
V0 þ @

@x
V ¼ 0; (6)

�
@

@t
þ�

�
Vþ @

@x
V0 ¼ �2mP; (7)

�
@

@t
þ�

�
Pþ 2pS ¼ 2mV; (8)

with the pseudodifferential operator

�ðx; p; tÞ ¼ e
Z 1=2

�1=2
d�E

�
xþ i�

@

@p
; t

�
@

@p
: (9)

Along with !ðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, the appropriate vacuum

initial conditions at asymptotic times tvac ! �1 are

S vacðpÞ ¼ � m

!ðpÞ and VvacðpÞ ¼ � p

!ðpÞ : (10)

The irreducible components are not directly observable;
however, they constitute the observable quantities which
can be derived from Noether’s theorem. For our purpose,
the chargeQðtÞ as well as the energy of the Dirac particles
EðtÞ are of special interest:

QðtÞ ¼ e
Z

d�V0ðx; p; tÞ; (11)

E ðtÞ ¼
Z

d�½mSðx; p; tÞ þ pVðx; p; tÞ�; (12)

with d� ¼ dxdp=ð2�Þ denoting the phase-space volume
element. The integrands qðx; p; tÞ ¼ V0ðx; p; tÞ and
�ðx; p; tÞ ¼ ½mSðx; p; tÞ þ pVðx; p; tÞ� can be viewed as
pseudocharge density and pseudoenergy density, respec-
tively. Because of the fact that we are considering a
quantum theory, it is more appropriate to consider the
momentum space marginal distributions

qðp; tÞ :¼
Z dx

ð2�Þqðx; p; tÞ; (13)

�ðp; tÞ :¼
Z dx

ð2�Þ ½mSðx; p; tÞ þ pVðx; p; tÞ�: (14)

Requiring that the total energy of the Dirac particles should
be calculable by integrating a particle number pseudodis-
tribution nðx; p; tÞ times the one-particle energy !ðpÞ, it is
also useful to introduce the momentum space particle
number densities

nðp; tÞ :¼
Z dx

ð2�Þnðx; p; tÞ; (15)

with

nðx;p;tÞ¼m½Sðx;p;tÞ�SvacðpÞ�þp½Vðx;p;tÞ�VvacðpÞ�
!ðpÞ :

(16)

The vacuum subtractions account for a normalization of
the density relative to the vacuum Dirac sea. Accordingly,
the total number of created particles reads

NðtÞ ¼
Z

dpnðp; tÞ: (17)

The PDE system Eqs. (5)–(8) calls for further rewritings
or even approximations as arbitrarily high momentum
derivatives have to be taken into account in general:
(a) Full solution in conjugate space: As the momentum

p appears linearly in the PDE system Eqs. (5)–(8), we can
transform these equations to conjugate y space. As a con-
sequence, �ðx; p; tÞ transforms into a function of y as well,

Z dp

ð2�Þ e
ipy�ðx; p; tÞ ¼ �iey

Z 1=2

�1=2
d�Eðxþ �y; tÞ;

(18)

resulting in an exact, first order PDE system.
(b) Leading order derivative expansion: The simplest

approximation is to expand �ðx; p; tÞ in a series with
respect to the spatial variable. Requiring that [27]��������Eðx;tÞ@Wðx;p;tÞ�

@p

��������� 1

24

��������E00ðx;tÞ@
3Wðx;p;tÞ�

@p3

��������; (19)

it is well justified to neglect the higher derivatives:

�ðx; p; tÞ ’ eEðx; tÞ @

@p
; (20)

yielding an approximate, first order PDE system.
(c) Local density approximation: Approximations can

also be constructed on the level of the marginal distribution
nðp; tÞ. Given an electric field Eðx; tÞ ¼ E0gðxÞhðtÞ, and
assuming that the spatial variation scale is much larger than
the Compton wavelength � � �C, it is well justified to
locally describe the Schwinger effect at any point x inde-
pendently. We then define the particle number quasidistri-
bution in local density approximation as

nlocðx; p; tÞ :¼ 2F ðp; t; xÞ: (21)

F ðp; t; xÞ denotes the one-particle distribution function
which is found by solving the quantum Vlasov equation
[34,35] at any fixed point xfixed for a time-dependent elec-
tric field EðtÞ ¼ E0gðxfixedÞhðtÞ. Accordingly,

nlocðp; tÞ :¼
Z dx

ð2�Þnlocðx; p; tÞ: (22)
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Results.—Our idealized model for a spatially and tem-
porally well-localized laser pulse in a standing wave mode
is parameterized by the electric field:

Eðx; tÞ ¼ E0 exp

�
� x2

2�2

�
sech2

�
t

�

�
; (23)

with � and � denoting the characteristic time and length
scale, respectively. We choose the parameters � ¼ 10=m,
E0 ¼ 0:5Ecr in this investigation, corresponding to an in-
tense subattosecond pulse. As the spatial extent as well as
the total energy of the electric field of the pulse decrease
with �, if all other parameters are held fixed, it is conve-
nient to disentangle this trivial scaling effect and inves-
tigate scaled quantities for better comparability

�nðp; tÞ :¼ nðp; tÞ
�

and �NðtÞ :¼ NðtÞ
�

: (24)

Full solution vs approximations.—In Fig. 1 we compare
the asymptotic value �nðp; t ! 1Þ of the full solution with
the leading order derivative expansion as well as with the
local density approximation for different values of �. The
difference between the various results is rather small for
broader pulses. As the various approximations are in good
agreement with the full solution, the pair creation process
can indeed be considered as taking place at any point x
independently in this regime. For decreasing �, however,
the various results differ substantially.

As expected, the leading order derivative expansion
becomes worse for small �. Whereas a previous study of
higher derivative terms signaled a potential failure at large
momenta [27], we here observe a breakdown of this ap-
proximation for small momenta p=m ! 0. For larger �,
the dominant momenta are still well approximated, but for
� approaching �C, the truncation artefacts overwhelm the
physical values. Also the fact that the particle density
�nðp; t ! 1Þ acquires negative values in the derivate ex-
pansion signals a clear breakdown of this approximation
for small momenta. The local density approximation fails
in a different respect: The peak momentum of the full
solution is shifted to smaller values for decreasing � which
is not reflected by the local density approximation.

Particle number density.—In Fig. 2, we investigate the
behavior of the full solution �nðp; t ! 1Þ for different
values of �. A decreasing � involves a shift of the peak
momentum to a smaller value: The value of the accelera-
tion by the electric field depends on the actual position
such that the field excitations feel a varying acceleration
when moving through the electric field. Accordingly, the
field excitations are less accelerated for narrow pulses.

Moreover, the shape of �nðp; t ! 1Þ becomes higher and
narrower for decreasing �, at least for � * 4�C. This is a
self-bunching effect caused by the spatial inhomogeneity:
Excitations which are created with high momenta are
accelerated for a shorter period as they leave the field
rapidly. By contrast, excitations which are created with

small momenta stay longer inside the field and are
accelerated for a longer period. Accordingly, the created
particles are bunched into a smaller phase-space volume.
For � & 4�C, however, the height of �nðp; t ! 1Þ de-

creases again as more and more field excitations gain too
little energy in order to finally turn into real particles. For
� ¼ �C, the energy content of the electric field is ulti-
mately so small that none of the vacuum fluctuations
eventually turns into real particles. This observation is in
good agreement with previous studies of space-dependent
electric fields EðxÞ [15–17]: The pair creation process is
expected to terminate once the work done by the electric
field over its spatial extent is smaller than twice the elec-
tron mass. As the pair creation process occurs at time
scales of the order of the Compton time tC ¼ 1=m, which
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FIG. 1. Comparison of �nðp; t ! 1Þ for the full solution (solid)
with the l.o. derivative expansion (dashed) and the local density
approximation (dotted) for � ¼ 10=m, E0 ¼ 0:5Ecr.
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is smaller than the time scale of the electric pulse � ¼
10=m, this estimate should be reasonable in our case as
well. The corresponding estimate for the pair creation
process to terminate for E0 ¼ 0:5Ecr is in fact in good
agreement with our results

� <
Ecr

E0

ffiffiffiffi
2

�

s
�C ’ 1:6�C: (25)

Number of created particles.—In Fig. 3 we compare the
asymptotic value �Nðt ! 1Þ obtained from the full solution
with the leading order derivative expansion as well as with
the local density approximation for different values of �.
Again, we observe good agreement between the full solu-
tion and the various approximations for large �, however,
substantial deviation for small �. Most notably, only the
full solution shows the sharp drop of �Nðt ! 1Þ for small �
in accordance with Eq. (25).

Conclusions.—We have presented an ab initio real-time
calculation of the Schwinger effect in the presence of a
simple space- and time-dependent electric field pulse in
1þ 1 dimensions, showing various remarkable features:

Most notably, we observe a new self-bunching effect in
phase space which can naturally be interpreted in terms of
the space and time evolution of the quantum excitations.
The pair creation process eventually terminates for spa-
tially small pulses once the work done by the electric field
is too small in order to provide the rest mass of an electron-
positron pair. Whereas the derivative expansion is quanti-
tatively able to signal these self-bunching effects, the local
density approximation fails to describe these important
properties.
These results suggest further studies of the Schwinger

effect in realistic space- and time-dependent electric fields
in 3þ 1 dimensions. The goal is to consistently describe
the Schwinger effect beyond the mean field level by taking
into account photon corrections to the background electric
field and subsequent collision and radiation processes. In
the long run, we expect the self-bunching effect to play an
important role in the generation of tailored electron or
positron beams.
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