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Anomalous diffusion in lipid bilayers is usually attributed to viscoelastic behavior. We compute the

scaling exponent of relative fluctuations of the time-averaged mean square displacement in a lipid bilayer,

by using a molecular dynamics simulation. According to the continuous time random walk theory, this

exponent indicates non-Gaussian behavior caused by a power-law trapping time. Our results provide the

first evidence that a lipid bilayer has not only viscoelastic properties but also trapping times distributed

according to a power law.
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Particle motions in overcrowded environments, such as
dense colloidal suspensions, cytoplasm, and supercooled
liquids, exhibit non-Gaussian behavior, dynamical hetero-
geneity, and anomalous diffusion [1–7]. Because of mo-
lecular crowding, particles become trapped and cannot
move smoothly [1–4]. The time-averaged mean square
displacement (TAMSD) is derived from a time series of a
single-molecule tracking:

�2
xð�; tÞ ¼ 1

t��

Z t��

0
½xðt0 þ�Þ � xðt0Þ�2dt0: (1)

The diffusion coefficient D � �2
xð�; tÞ=�� for each

TAMSD shows large random deviations from the ensemble
average; i.e., random diffusion coefficient exists in crowded
fluids such as living cells [4–8].

There are two different models for subdiffusive
processes. One is fractional Brownian motion (FBM),
which is a generalization of Brownian motion [9].
Subdiffusion in FBM originates from an anticorrelation,
which emerges in viscoelastic fluids. It is known that
subdiffusion in crowded fluids is closely related to FBM,
i.e., viscoelasticity [4,7,10,11]. However, FBM cannot ac-
count for non-Gaussian behavior of the TAMSD because
ergodicity, which holds in FBM, ensures the central limit
theorem [12,13].

The other model is a continuous time random walk
(CTRW), which is a random walk with random trapping
times [14]. When the mean trapping time diverges, a
random walker undergoes subdiffusion. By the divergence
of the mean trapping time, the trajectory tends to be
trapped as time goes on. Unlike FBM, ergodicity, i.e.,
ðtime averageÞ ¼ ðensemble averageÞ, does not hold in a
CTRW. Moreover, it is known that the diffusion coeffi-
cients for TAMSDs are intrinsically random in trapped
models such as the CTRW and deterministic dynamical
systems [15–19]. Intrinsic randomness of the transport
coefficient is caused by the divergence of the mean

trapping time, which involves the breakdown of the law
of large numbers. Even when there is a cutoff in the
trapping-time distribution, the transport coefficient for
TAMSD shows large fluctuations [20]. In fact, the
deviations of TAMSDs from the ensemble average in the
diffusion of lipid granules are consistent with a CTRW
process with a truncated power-law trapping-time distri-
bution [21,22].
Lipid bilayers are two-dimensional complex fluids. The

viscoelasticity of lipid bilayers is still an open problem in
experiments [23]. To elucidate anomalous transport prop-
erties of lipid bilayers, we consider the relative fluctuations

of TAMSD �2ð�; tÞ, defined by

Rðt; �Þ :¼ hj�2ð�; tÞ � h�2ð�; tÞiji
h�2ð�; tÞi

; (2)

where h. . .i denotes the ensemble average. The relative
fluctuations characterize non-Gaussian behavior and ergo-
dicity breaking in time averages [15,24]. Using renewal
theory [25], we analytically show that the relative fluctua-
tions Rðt; �Þ decay as t�� in a CTRW. This scaling ex-
ponent � is useful to characterize the anomaly of the
transport coefficient caused by a power-law trapping time
because � < 0:5 implies non-Gaussian fluctuations. By
performing a molecular dynamics simulation on a lipid
bilayer, we find non-Gaussian fluctuations of TAMSD and
viscoelasticity. This non-Gaussian behavior cannot be
accounted for by FBM because the relative fluctuations
in FBM generating subdiffusion decay as t�0:5 [12].
Therefore, we show, for the first time, that a lipid bilayer
has not only a viscoelastic property but also a power law in
the trapping time.
Relative fluctuations in CTRWs.—TAMSD can be cal-

culated by using renewal theory, because trapping times
between successive jumps in CTRWare independently and
identically distributed random variables with a probability
density function (PDF) fðxÞ in a manner similar to renewal
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processes [17,20]. Let Nt be the total number of jumps
until time t, Sr be the time when the rth jump occurs, X1

be the time when the first jump occurs, and Xn be the time
interval between the n� 1th jump and the nth jump, then
we have Sr ¼ X1 þ � � � þ Xr. When the mean and
variance of Xn exist, denoted by � and �2, respectively,
the Laplace transform of fðxÞ is given by f�ðsÞ¼
1�s�þ�2þ�2

2 s2þoðs2Þ. Let rt ¼ t
� þ x�

ffiffiffiffiffiffiffiffiffiffiffi
t=�3

p
. Then,

Pr½ðNt � t=�Þ=� ffiffiffiffiffiffiffiffiffiffiffi
t=�3

p Þ< x� ¼ PrðSrt > tÞ. The central

limit theorem states

Pr

�
Nt � t=�

�
ffiffiffiffiffiffiffiffiffiffiffi
t=�3

p < x

�
! 1�Gð�xÞ; (3)

where GðxÞ is the Gaussian distribution [25]. Therefore,
Nt obeys the Gaussian distribution with mean t=� and
variance �2t=�3, when the mean and the variance exist.
On the other hand, Nt does not obey the Gaussian distri-
bution when the variance does not exist. In particular, when
the mean exists and the variance does not exist, the Laplace
transform of fðxÞ is given by

f�ðsÞ ¼ 1� s�þ C�s
� þ oðs�Þ; (4)

where C� is a constant and �ð<2Þ is the exponent indicat-
ing the divergence of the second moment [26]:R
n
0 x

2fðxÞdx / n2��ðn ! 1Þ. That is, � characterizes the

tail of fðxÞ: fðxÞ / x�1��ðx ! 1Þ. According to the gen-
eralized central limit theorem [27], we have

Pr

�
Nt � t=�

�ðtÞ < x

�
! 1�G�ð�xÞ ðt ! 1Þ; (5)

where �ðtÞ � ðt=�Þ1=� and G�ðxÞ is the stable distribution
with index �. Then, the scaling of the fluctuations of Nt is
given by

hjNt � t=�ji ��þ�ðtÞ ��þðt=�Þ1=�; (6)

where �þ is the mean of G�ðxÞ with x > 0.

In general, there is the useful relation between TAMSD
and Nt in a CTRW [15,17,20]:

�2
xð�; tÞ ffi CNt

t
; (7)

where C is not a random variable but a constant depending
on the variance of jump lengths and �. It has been shown
that C ¼ � when the variance of jump lengths is unity.
Even when the mean trapping time diverges, TAMSD
shows normal diffusion [15,17,20]. Therefore, diffusion
coefficients are given by Dt ¼ Nt=t. The distribution of
the normalized diffusion coefficients becomes the stable
distribution with index � when the PDF of trapping times
in CTRW is fðxÞ / x�1�� (1<�< 2). Using the relation
(7), we obtain the scaling of the relative fluctuations of

TAMSD �2ðt; �Þ defined by (2):

Rðt; �Þ �
� �ffiffiffi

�
p t�1=2 ð�> 2Þ
�þðt=�Þ�ð1�1=�Þ ð1<�< 2Þ: (8)

Thus, non-Gaussian behavior (1<�< 2) can be repre-
sented by the scaling exponent of the relative fluctuations.
Note that the relative fluctuations do not converge to zero
in the case of � � 1 [28].
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FIG. 1 (color). (a) Lateral TAMSDs for 20 different lipid
molecules (t ¼ 200 ns). Lines indicate sublinear growths,

�2ð�; tÞ / �0:33 and �0:7. (b) PDF of the exponent � in small

� regimes. (c) PDFs of the TAMSDs, � ¼ �2ð5; tÞ, for different
measurement times t.
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FIG. 2 (color). Relative fluctuations of TAMSD (� ¼ 5 ns).
Dashed line represents the non-Gaussian scaling, Rðt; �Þ /
t�0:22. Error bars are the standard deviations, where ensembles
are obtained by nonoverlapping time intervals.
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Transient subdiffusion and fluctuations of TAMSD.—To
investigate non-Gaussian fluctuations in lipid bilayers,
we performed a molecular dynamics simulation on a
1-palmitoyl-2-oleoyl-phosphatidylethanolamine lipid bi-
layer using the AMBER10 program [29]. We constructed
the lipid bilayer by 128 1-palmitoyl-2-oleoyl-
phosphatidylethanolamine lipid molecules. The system
was solvated by adding 10 004 water molecules to each
side of the membrane. After the system was heated at
310 K under ordinary pressure, we performed an NPT
simulation. After equilibration (100 ns), an additional
200 ns NPT simulation for data analysis was performed
[30]. In the molecular dynamics simulation, the motion of
the lipid bilayer within the systems undergoes Brownian
motion because of finite size effects [31]. To eliminate this
motion, we analyze a time series of relative motions of
lipid molecules. That is, we use the relative motions
xiðtÞ ¼ XiðtÞ � XGðtÞ, yiðtÞ ¼ YiðtÞ � YGðtÞ, and ziðtÞ ¼
ZiðtÞ � ZGðtÞ, where ðXGðtÞ; YGðtÞ; ZGðtÞÞ is the position
of the center of mass of a lipid bilayer and
ðXiðtÞ; YiðtÞ; ZiðtÞÞ is the position of the center of mass of
ith lipid molecule (i ¼ 1; . . . ; 128).

Lateral TAMSD is defined by �2ð�; tÞ ¼ ½�2
xð�; tÞþ

�2
yð�; tÞ�=2, where t is the measurement time. In Fig. 1(a),

lateral TAMSDs for 20 different lipid molecules are shown.

Lateral TAMSDs exhibit subdiffusion, �2ð�; tÞ / ��,
for a small �. The subdiffusion exponent for a small � is
around � ffi 0:33 [Fig. 1(b)]. For a large �, the exponents
for lateral TAMSDs are around 0.7, but fluctuations of
lateral TAMSDs for a large � are larger than those for a
small �. Several lateral TAMSDs show the transition from
subdiffusion to normal diffusion, consistent with a previous
study [32].
The PDFs of lateral TAMSDs at � ¼ 5 ns are presented

in Fig. 1(c). Fluctuations of lateral TAMSDs are large
particularly for a small measurement time t, and the
PDFs of lateral TAMSDs are not Gaussian, unlike the
expected consequence of the central limit theorem. In a
CTRW generating transient subdiffusion, the distribution
of lateral TAMSDs is the Mittag-Leffler distribution for a
small measurement time t and converges to Gaussian as
t ! 1 [20]. Although lateral TAMSDs show large fluctu-
ations, the distribution is neither Mittag-Leffler nor
Gaussian.
Non-Gaussian fluctuations of TAMSD.—To elucidate

non-Gaussian behavior, we exploit the relative fluctuations
of the lateral TAMSD. The ensemble averages are obtained
by averaging lateral TAMSDs for 128 different lipid mole-
cules. Figure 2 shows a clear power-law decay of the
relative fluctuations except for a small measurement time:

Rðt; �Þ / t��; (9)

with � ffi 0:22, where the point Rð10; 5Þ is ignored to
obtain the scaling exponent of relative fluctuations [30].
The relative fluctuations decay more slowly than t�0:5,
indicating non-Gaussian fluctuations of lateral TAMSDs.
Furthermore, the power-law exponent in the trapping-time
distribution is estimated as � ¼ 1=ð1� �Þ ffi 1:28. Hence,
anomalous transport in a lipid bilayer involves a power-law
trapping time.
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FIG. 3 (color). Probability density function of trapping time.
Solid and dashed lines represent a power law PðtÞ / t�2:5 and the
Weibull distribution with the exponent a ¼ 0:69, respectively.
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FIG. 4 (color). Trajectories of the center of mass for lipid molecules on the upper layer: (a) time interval from 0 to 10 ns and (b) time
interval from 10 to 20 ns. Trajectories with the fastest 20%, the intermediate 60%, and the slowest 20% are represented by blue, red,
and green, respectively, where diffusivity is defined as the lateral TAMSD at � ¼ 5 (t ¼ 10 ns).
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To observe a power-law trapping in a straightfor-
ward way, we investigate the distribution of trapping
times [30]. The jump is defined as the event that the
center of mass of a lipid molecule moves larger than
a threshold �rc in a unit time interval �tð¼ 1 psÞ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifxðtþ�tÞ�xðtÞg2þfyðtþ�tÞ�yðtÞg2p 	�rc. The trap-
ping time is defined as the time between successive jumps.
Changing the threshold, we find that the distribution of the
trapping time changes from the Weibull distribution,
FðtÞ ¼ 1� exp½�ðt=	Þa�, to a power law, PðtÞ ¼ F0ðtÞ /
t�1�� (Fig. 3). Moreover, the power-law exponent �
is almost the same as 1.28, obtained by the relative
fluctuations.

Dynamical heterogeneity and anticorrelation.—Lateral
TAMSDs characterize diffusivities of particles. Analyzing
the diffusivities of all lipid molecules in different time
intervals, we demonstrate that the lipid molecules with
low or high diffusivities assemble, and the diffusivities
change with time (Fig. 4). Similar to dynamical heteroge-
neity in colloidal suspensions [1,2], fast particles are
spatially correlated. However, unlike usual dynamical het-
erogeneity, all lateral TAMSDs show transient subdiffu-
sions. We note that our theoretical approach, i.e., renewal
theory, holds because spatial correlations are transient.

We found that lateral TAMSDs show transient subdiffu-
sion. Using the mean maximal excursion (MME) method
[33], we clarify whether the transient subdiffusion results
from an anticorrelation. As shown in Fig. 5, the MSD
defined by the ensemble average hrðtÞ2i and the MME
second moment hrðtÞ2maxi grow sublinearly with time,

where rðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2 þ yðtÞ2p

and rmaxðtÞ ¼ maxfrðt0Þ:0 �
t0 � tg. The subdiffusion exponent of the MSD is smaller
than that of the MME second moment. Moreover, the
regular moment ratio hrðtÞ4i=hrðtÞ2i2 fluctuates around 2
and the MME moment ratio hrðtÞ4maxi=hrðtÞ2maxi2 converges
to around the estimated value for FBM. These facts are
evidence of an anticorrelation. Furthermore, the p varia-
tion test also suggests an anticorrelation [30].

Discussion.—We computed the scaling exponent of the
relative fluctuations. The non-Gaussian exponent, which is

smaller than 0.5, is evidence of a power-law trapping time
in anomalous transport. By performing a molecular dy-
namics simulation on a lipid bilayer, we found non-
Gaussian behavior of the lateral TAMSD. Moreover, by
the mean maximal excursion method, it was shown that
transient subdiffusion originates from an anticorrelation.
Our results suggest that molecular crowding leads to an
anticorrelation and power-law trapping times. Therefore, a
combined model containing FBM and a CTRW could be
important.
We are grateful to Tomoshige Miyaguchi and the refer-

ees for the fruitful comments and discussions. This work is
supported by the Core Research for the Evolution Science
and Technology (CREST) of the Japan Science and
Technology Corporation (JST) and Keio University
Program for the Advancement of Next Generation
Research Projects.

*akimoto@z8.keio.jp
[1] E. R. Weeks and D.A. Weitz, Chem. Phys. 284, 361

(2002).
[2] W.K. Kegel and A. van Blaaderen, Science 287, 290

(2000).
[3] I. Y. Wong et al., Phys. Rev. Lett. 92, 178101 (2004).
[4] J. Szymanski and M. Weiss, Phys. Rev. Lett. 103, 038102

(2009).
[5] G. Seisenberger et al., Science 294, 1929 (2001).
[6] I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102

(2006).
[7] S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Phys. Rev.

Lett. 104, 238102 (2010).
[8] A. V. Weigel, B. Simonb, M.M. Tamkunc, and D. Krapf,

Proc. Natl. Acad. Sci. U.S.A. 108, 6438 (2011).
[9] B. B. Mandelbrot and J.W. Van Ness, SIAM Rev. 10, 422

(1968).
[10] M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter,

Phys. Rev. Lett. 103, 180602 (2009).
[11] M. Magdziarz and J. Klafter, Phys. Rev. E 82, 011129

(2010).
[12] W. Deng and E. Barkai, Phys. Rev. E 79, 011112 (2009).

 10 2

M
SD

, M
M

E

〈r
(t

)4
〉/〈

r(
t)

2
〉2 10

 1

 10
 -1

 10 -1 10 -2 10 -3  1  10  10 2

 1

 0

 2

 3

 4

 5

 0  100  200

 Regular
 MME
 2
 1.49
 FBM

 MSD
 MME

 0.5

 0.33

t  [ns]  [ns]
 [

Å
 ]2 ~ t

~ t

t

(a)  (b)

FIG. 5 (color). Mean maximal excursion analysis. (a) MSD and the MME second moment. (b) Moment ratios for regular moment
and for the MME moment.

PRL 107, 178103 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 OCTOBER 2011

178103-4

http://dx.doi.org/10.1016/S0301-0104(02)00667-5
http://dx.doi.org/10.1016/S0301-0104(02)00667-5
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1103/PhysRevLett.92.178101
http://dx.doi.org/10.1103/PhysRevLett.103.038102
http://dx.doi.org/10.1103/PhysRevLett.103.038102
http://dx.doi.org/10.1126/science.1064103
http://dx.doi.org/10.1103/PhysRevLett.96.098102
http://dx.doi.org/10.1103/PhysRevLett.96.098102
http://dx.doi.org/10.1103/PhysRevLett.104.238102
http://dx.doi.org/10.1103/PhysRevLett.104.238102
http://dx.doi.org/10.1073/pnas.1016325108
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1103/PhysRevLett.103.180602
http://dx.doi.org/10.1103/PhysRevE.82.011129
http://dx.doi.org/10.1103/PhysRevE.82.011129
http://dx.doi.org/10.1103/PhysRevE.79.011112


[13] J.-H. Jeon and R. Metzler, J. Phys. A 43, 252001 (2010).
[14] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[15] Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev.

Lett. 101, 058101 (2008).
[16] T. Akimoto and T. Miyaguchi, Phys. Rev. E 82, 030102(R)

(2010).
[17] T. Miyaguchi and T. Akimoto, Phys. Rev. E 83, 031926

(2011).
[18] T. Neusius, I.M. Sokolov, and J. C. Smith, Phys. Rev. E

80, 011109 (2009).
[19] S. Burov, R. Metzler, and E. Barkai, Proc. Natl. Acad. Sci.

U.S.A. 107, 13 228 (2010).
[20] T. Miyaguchi and T. Akimoto, Phys. Rev. E 83, 062101

(2011).
[21] J.-H. Jeon et al., Phys. Rev. Lett. 106, 048103 (2011).
[22] S. Burov, J.-H. Jeon, R. Metzler, and E. Barkai, Phys.

Chem. Chem. Phys. 13, 1800 (2011).
[23] C.W. Harland, M. J. Bradley, and R. Parthasarathy, Proc.

Natl. Acad. Sci. U.S.A. 107, 19 146 (2010).
[24] F. Bardou, J. P. Bouchaud, A. Aspect, and C. Cohen-
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