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The present state of the art in cooling mechanical resonators is a version of sideband cooling. Here we

present a method that uses the same configuration as sideband cooling—coupling the resonator to be

cooled to a second microwave (or optical) auxiliary resonator—but will cool significantly colder. This is

achieved by varying the strength of the coupling between the two resonators over a time on the order of the

period of the mechanical resonator. As part of our analysis, we also obtain a method for fast, high-fidelity

quantum information transfer between resonators.
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There is presently a great deal of interest in cooling
high-frequency micro- and nanomechanical oscillators to
their ground states. This interest is due to the need to
prepare resonators in states with high purity to exploit their
quantum behavior in future technologies [1,2]. The key
measure of a cooling scheme is the cooling factor, which
we will denote by fcool. The cooling factor is the ratio of
the average number of phonons in the resonator at the
ambient temperature nT to the average number of phonons
achieved by the cooling method, which we will denote by
hnicool. The present state of the art for cooling mechanical
resonators is sideband cooling, which was originally de-
veloped in the context of cooling trapped ions [3–5]. This
method is a powerful and practical technique, able to
achieve large cooling factors, and these have been demon-
strated in the laboratory [6–16].

In the context of mechanical resonators, sideband cool-
ing involves coupling the resonator to be cooled (from now
on the ‘‘target’’) to a microwave or optical resonator (the
‘‘auxiliary’’) whose frequency is sufficiently high that it
sits in its ground state at the ambient temperature.
Sideband cooling uses a linear coupling between the res-
onators, which in practice is usually obtained from a non-
linear ‘‘radiation-pressure’’ interaction by strongly driving
the auxiliary [5]. If we denote the annihilation operators for
the target and auxiliary by a and b, respectively, then the
Hamiltonian of the two linearly coupled resonators is

H ¼ @!ayaþ @�bybþ g cosð�tÞxaxb; (1)

where xa ¼ aþ ay and xb ¼ bþ by are the position op-
erators of the respective resonators. The coupling is modu-
lated at the difference frequency between the resonators,
� ¼ ��!. This down converts the high frequency of the
auxiliary resonator so that the two resonators are effec-
tively on resonance, and thus exchange energy at the
coupling rate g. With this frequency conversion, the

auxiliary constitutes a source of essentially zero entropy
(and thus zero temperature) for the target resonator [17].
When the rate of the coupling g is much smaller than the

target resonator frequency ! [so that one is within the
rotating-wave approximation (RWA)—see, e.g., [18] ],
then the linear coupling between the resonators merely
amounts to excitation (phonon or photon) exchange be-
tween the two. If the damping rate of the auxiliary � is now
fast enough, then the excitation exchange, combined with
the relatively fast damping of the auxiliary at effectively
zero temperature, extracts the phonons out of the target. If
the coupling to the resonator is perturbative (g � !), the
cooling factor is merely the ratio of the phonon extraction
rate to the resonators damping rate �. The extraction rate
cannot always be obtained analytically, but if we denote it
by �cool, then hnicool ¼ nT=fcool, where the cooling factor
is fcool ¼ �cool=�. Note that the extraction rate is bounded
by the rates g and �. For sideband cooling, the RWA
requires g � ! and � � !, limiting the cooling factor.
Here we demonstrate that one can cool significantly

better than traditional sideband cooling by using quantum
control to go beyond the RWA, into the ultrastrong cou-
pling regime g�!. We first show that a particular time
dependence of the coupling rate gðtÞ can achieve a high-
fidelity transfer of quantum states between the target and
auxiliary resonators within a single resonator period. As
pointed out in [19], ‘‘state swapping’’ is one way to achieve
cooling, as this process will load the cold state of the
auxiliary into the target [20]. In fact, the phonon/photon
exchange of the RWA implements state swapping in a time
of �=ð2gÞ [21]. However, it was shown in [22] that using
this to cool (which means running traditional sideband
cooling, but now only for a single swap time) is only
marginally better than the usual approach. In contrast, we
show here that numerically optimized control sequences
will achieve significantly better cooling factors. This is
because they allow one to circumvent the RWA restriction
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that g � !, and thus swap the energy out of the resonator
significantly faster (namely, within a single oscillation
period). Further, this method can achieve these lower
temperatures over a much wider range of values of the
auxiliary damping rate �. While our method is quite prac-
tical, because it requires a relatively small modification to
the existing sideband cooling scheme, and performs at least
as well as sideband cooling for any value of g, achieving
the lowest temperatures does require ultrastrong coupling
(g�!Þ. Previously nanoresonator experiments had only
achieved small values of g, but recently a tremendous
increase in g was demonstrated in an experiment by
Teufel et al. [14]. This has brought g within a factor of
10 of !, and further increases appear feasible. The present
method is therefore timely, as we anticipate that near-
future experiments will be able to realize it. We note that
Machnes et al. [23] have previously devised a way to go
beyond the RWA for trapped ions, where the auxiliary
system is a qubit. However, their method is not feasible
for nanoresonators, certainly with near-future technology,
because it requires g � !.

To begin our analysis we first consider the problem of
engineering a fast, high-fidelity state swap between two
linearly coupled resonators, as this is an important problem
in its own right. Fast operations on quantum information
are important due to the ever present effects of decoher-
ence. To obtain such a state swap, and thus an efficient
energy transfer without the RWA, we examine the algebra
generated by the linear coupling in conjunction with
the free Hamiltonians of the resonators. The algebra of
these three Hamiltonians suggests that it should be possible
to engineer a perfect state swap by concatenating the
evolutions generated by the Hamiltonians in a process of
‘‘quantum control’’ [24]. Up to local operations on each
resonator, such a concatenation is equivalent to varying the
coupling g with time. This would allow us to obtain
efficient energy transfer when g�!, not only achieving
faster state swapping, but also better cooling.

To explore the above conjecture, we simulate the evolu-
tion given by the Hamiltonian in Eq. (1), in which g is a
function of time. Since � is typically much greater than !
(by a factor of at least 100), we may assume that the
frequency conversion is exact, and set � ¼ ! and � ¼ 0.
The corrections to this approximation are of the order of
ð!=�Þ2. (This is, in fact, an RWA for the frequency �,
which is distinct from the RWA for the target frequency !,
required by sideband cooling.) We prepare the target reso-
nator in a state that is confined to the space spanned by the
12 lowest Fock states, and completely mixed on that space.
The auxiliary is prepared in the ground state, and the reso-
nators evolved for a specified time. This allows us to deter-
mine the quality of the swapmerely by calculating the purity
of the final density matrix for the target resonator. If this
state is pure, then the evolution has successfully transferred
all the quantum information to the auxiliary resonator. We

evolve for a single period of the target resonator, and
dividing this time into five equal intervals of duration �t,
we parametrize gðtÞ by making it piecewise constant on
these intervals. Finally, we perform a numerical optimiza-
tion, using a quasi-Newton line search method [25], to
determine the five piecewise-constant values for gðtÞ. For
the simulation we use the basis of Fock states, including the
lowest 25 states for each resonator. This achieves an essen-
tially perfect state swap (a final purity of 0.999 977) with the
following five values of g=!: (1.78, 1.45, 2.44, 1.61, 0.195).
As a second example, we find that a state swap with a purity
of 0.999 991 can be obtained in 0.7 of the resonators period,
with the values (2.76, 0.474, 3.73, 0.78, 2.59).
The above results show that, in the absence of decoher-

ence, state swapping in less than one period is within the
‘‘control space’’ of the linear coupling. But this does not
tell us how well we can transfer the cold auxiliary state to
the hot resonator in the presence of damping. Damping is
equivalent to a continuous measurement process [22,26],
and this inhibits the transfer of energy to the auxiliary due
to the quantum Zeno effect. We must therefore simulate the
optimized cooling in the presence of damping, but it is
impractical to do this with the simulation method used
above, as the size of the required superoperators is too
large. Fortunately in the case of cooling we are only
interested in the average phonon number, given by hni ¼
hayai, which is a second moment of operators a and ay.
Because the dynamics of the resonators is linear (that is,
the evolution can be described by a set of linear quantum
Langevin equations [27–29]) one can derive a closed set of
equations for the variances and covariances of the annihi-
lation operators. Because the means of these operators are
zero in thermal states, and remain zero during the evolu-
tion, the covariances are equal to the second moments.
To describe the damping, we use the Markovian version

of the Brownian-motion master equation [29,30]. If we
define the vector x � ða; ay; b; byÞt, then the matrix of
covariances is C � hxxti � hxihxti. The equation of mo-
tion for C is

_C ¼ ACþ CAt þG; (2)

where

A¼
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and naux is the initial average number of photons in the
auxiliary resonator.

We now wish to determine the function gðtÞ that gives
the minimum value of hayai after a fixed time interval. To
do so we take the same approach as above, choosing g to be
piecewise constant. We wish to determine the optimal
cooling over a broad range of the relevant parameters,
and compare this to sideband cooling. Measuring time in
units of 1=!, the important parameters are the damping
rates of the target and auxiliary (respectively �=! and
�=!), and the average number of thermal phonons in the
target at temperature T, nT . By examining the equations of
motion, we see that so long as nT � 1, to a good approxi-
mation the evolution, and thus the cooling, depends only
on the product of � and nT , rather than each separately.
Since nT � 1 is the relevant regime for present experi-
ments, we therefore need to determine the optimal cooling
as a function of �=! and ð�=!ÞnT .

The thermal occupation of the auxiliary at the ambient
temperature naux is very small with present technology. For
example, a 10 GHz stripline resonator at 50 mK has
naux ¼ 6:7� 10�5, and at 100 mK has naux¼8:3�10�3.
We expect naux to be significant only if the cooled value of
hayai is close to naux, and we verify this below.

The final parameter is the time over which we perform
the cooling. The optimal cooling will be obtained when the
control pulse swaps the energy into the auxiliary in the
shortest time. As the damping rates increase, we expect the
Zeno effect to lengthen this minimum swap time. For each
value of � we obtained the (approximately) optimal time
by hand. As expected, we find that this time increases with
� (since �=! remains small).

We now perform the optimization over gðtÞ, with
naux ¼ 0, and plot the results in Fig. 1, along with the
values of hnicool that are achieved using sideband cooling

(these are obtained by optimizing over the coupling
strength and the detuning [5]). We see from Fig. 1 that
our ‘‘optimal control’’ cooling scheme is superior to side-
band cooling when � is less than the value for which
sideband cooling achieves its best performance. The sec-
ond key result is that the improvement provided by
optimal control increases as �nT=! decreases. For
ð�=!ÞnT ¼ 10�4, 10�3, and 10�2, the smallest values we
obtained for hayai are better than sideband cooling by
factors of approximately 13, 5, and 5, respectively [see
Figs. 1(a)–1(d)]. We note that a simple estimate of the
lowest achievable temperature is as follows: ideally the
time for the control to swap the energy is �=g� �=!, and
the bath injects approximately �nT phonons during this
time. Thus one expects that hnicool � �ð�=!ÞnT . This
closely matches the results in Fig. 1 when �nT=! � 1.
Most of the cooling results in Fig. 1 are obtained using

no more than 24 time segments [that is, 24 piecewise-
constant values for gðtÞ] per period. In many cases 10
segments is sufficient for optimal cooling. While the
piecewise-constant functions we have used for gðtÞ show
that the control time scales are feasible, these functions are
rather artificial. The actual experimental wave forms will
not have infinitely sharp transitions between segments.
To show that such sharp transitions are unnecessary, for a
single value of � we perform the optimization for a 12-
segment pulse, now with linear transitions that have the
same duration as the constant segments. The piecewise-
constant pulse achieves hnicool ¼ 3:39� 10�4, and the
piecewise-linear pulse performs very similarly, giving
hnicool ¼ 3:46� 10�4. Both pulses are displayed in
Fig. 2. Note that the coupling is turned off at the end of
the piecewise-linear pulse, which is necessary to leave the
resonator in its ground state. This removes the need to turn
off the coupling adiabatically, as would be required by

FIG. 1 (color online). The average phonon number hnicool achieved by the cooling method presented here, compared to sideband
cooling, as a function of the damping rate of the auxiliary resonator � and for four values of �nT=!. The values obtained by sideband
cooling are given by the circles–dashed line (red online). The circles–solid line give the values achieved by the present cooling method,
in which g is a time-varying pulse. The time required for the cooling pulse � varies with �. As examples, for plot (a), from left to right,
to obtain the values given by the circles we used �!=ð2�Þ ¼ 0:5, 0.55, 0.73, 1, 1, 1.5, 2, 2, 3, 5.3, 6. For plot (c), the pulse times are
�!=ð2�Þ ¼ 0:55, 0.6, 0.6, 0.6, 0.8, 0.7, 0.8, 1, 1.6, 1.6, 1.8, 2, 2.
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sideband cooling. To determine the wave form for a spe-
cific experiment, one would ideally parametrize gðtÞ so that
it is well matched to the wave forms produced by the
electronics. Since fast electronics generates transitions
shorter than 1 ns, the required control pulses should be
feasible for resonators with frequencies up to 100 MHz.
We have also examined the sensitivity of the cooling to
noise on the control pulse: with independent Gaussian
errors of 0.1% on each segment of the pulse in Fig. 2 [inset
(a)], hnicool increases by about 30%.

As noted above, the linear interaction in Eq. (1) is
usually obtained by using the nonlinear interaction
xab

yb, and strongly driving the auxiliary [3–5]. This in-
duces an effective frequency shift in the auxiliary of�! ¼
g2=ð2!Þ, with the result that changing g also changes the
auxiliary frequency. Optimization shows that this fre-
quency shift must be canceled to realize the above cooling.
This could be achieved by modulating the frequency of the
driving field, or by applying a second field to modulate the
frequency of the target.

We now determine the effect of thermal photons in the
auxiliary resonator (naux > 0). We perform the optimiza-
tion again for the leftmost four points plotted in Fig. 1(a),
for which � ¼ 10�6! and nT ¼ 100. With naux ¼ 0 we
have hnicool ¼ 10�4 � ð2:8; 3:4; 4; 4:7Þ. For naux ¼ 10�4,
these become hnicool ¼ 10�4 � ð3:8; 4:4; 5; 5:7Þ. The in-
crease in the average phonon number is approximately
the addition of naux. This confirms our intuition that ther-
mal photons are only significant when hnicool � naux.

To summarize, we have shown that by modulating a
linear coupling, an essentially perfect state swap can be

performed between two resonators within a single oscilla-
tion period. This can be used to prepare a mechanical
resonator in the ground state, with fidelity higher than
possible with traditional sideband cooling.
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Note added.—Recently, we learned of concurrent work
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