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The Coulomb phase of spin ice, and indeed the Ic phase of water ice, naturally realize a fully packed

two-color loop model in 3D. We present a detailed analysis of the statistics of these loops: we find loops

spanning the system multiple times hosting a finite fraction of all sites while the average loop length

remains finite. We contrast the behavior with an analogous 2D model. We connect this body of results to

properties of polymers, percolation and insights from Schramm-Loewner evolution processes. We also

study another extended degree of freedom, called worms, which appear as ‘‘Dirac strings’’ in spin ice. We

discuss implications of these results for the efficiency of numerical cluster algorithms, and address

implications for the ordering properties of a broader class of magnetic systems, e.g., with Heisenberg

spins, such as CsNiCrF6 or ZnCr2O4.
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In the study of magnetism, we are naturally led to
consider local degrees of freedom and their correlations,
such as the order of the local spin orientation in a ferro-
magnet. In other settings, the fundamental degrees of free-
dom are extended, with polymers presenting perhaps the
most familiar instance.

In magnets in two dimensions (2D), linearly extended
objects do occur in the form of magnetic domain walls. The
study of such ‘‘nonlocal’’ degrees of freedom, involving
questions such as: ‘‘What is the probability for two bonds
to be on the same domain wall?’’, is related to problems
like the geometry of the hull of a percolating cluster.
Some beautiful theories have been developed in this con-
text [1–3]. The same questions in higher dimension do not
lend themselves to similarly exact approaches, but fractal
extended objects in 3D have been studied in the contexts of
polymer physics [4], cosmic strings [5,6], magnetic fila-
ments in manganite materials [7], and laser speckles [8].

Here, we discuss a 3D frustrated magnetic system, spin
ice [9], exhibiting two distinct extended degrees of free-
dom, which we call loops and worms. Spin ice is unusual in
that its low-temperature magnetic state is neither ordered
(as in a ferromagnet) nor disordered (as in a paramagnet).
Rather, this state is a Coulomb phase, where an emergent
conservation law leads to algebraic spin correlations [10].
The loops define a two-color fully packed loop model on
the diamond lattice (the ‘‘premedial’’ lattice of the pyro-
chlore [11]). Similar loops also emerge in models for
pyrochlore compounds with two species of magnetic ions
[11–13] or itinerant charges [14,15]. Worms, named after
their appearance in Monte Carlo worm algorithms [16,17],
only come in one flavor and can pass through themselves
and each other. Worms play a conceptually important role
in the physics of spin ice as they are connected to ‘‘Dirac
strings’’ and deconfinement in the Coulomb phase [18–21].
Thus, besides their statistical physics interest, we study

loops and worms to elucidate properties of this new mag-
netic phase.
In this Letter, we numerically evaluate fundamental

characteristics such as the probability distribution function
(PDF) of loop length ‘, radius of gyration and the proba-
bility for two sites separated by distance r to be on the
same loop, CðrÞ. We present analytical arguments to ac-
count for the observed regimes and their concomitant
power laws, and contrast this behavior to the analogous
model in two dimensions, on the checkerboard (Fig. 1),
whose premedial lattice is the square lattice. Finally, we
mention possible experimental signatures and touch on
related models which naturally occur in the study of frus-
trated magnets and multicolored loop models [11–13].
Loops and worms.—In spin ice, classical Ising spins live

on the sites of the pyrochlore, or equivalently, the bonds of

FIG. 1 (color online). Left: Loops of two colors, blue (red) for
up (down) spins, and a worm (dashed green, made of alternating
up and down spins), on the checkerboard lattice. On the pre-
medial square lattice, every edge is occupied and every site is
visited by both loop colors: this is a FPL2. A worm can cross
itself and retrace its path. Right: Spin ice model on the pyro-
chlore lattice with in (blue) and out (red) spins.
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the diamond lattice (Fig. 1). At low temperature, an ex-
ponentially large number of degenerate ground state con-
figurations is available, expðNSpÞ, where N is the number

of spins and Sp � 1
2 log

3
2 is well approximated by Pauling’s

ice entropy. These states obey the ice rules, stating that two
of the spins point towards a given diamond lattice site, the
other two pointing outwards. They correspond to the al-
lowed configurations of cubic ice Ic, captured by the six-
vertex model on the diamond lattice. The ensemble of
these states provides the Coulomb phase exhibiting an
emergent gauge field and algebraic correlations [10,11].

By coloring the links occupied by up and down spins
differently, we obtain a fully packed two-color loop model
(FPL2 [22], see Fig. 1). In contrast, a worm contains an
alternating sequence of adjacent up and down spins. There
are different possible constructions for a worm. We adopt
an unbiased one in which a worm, having entered a tetra-
hedron, exits through one of the two opposite spins in that
tetrahedron with equal probability. It ends when it meets its
initial site.

We consider periodic systems of square or cubic geome-
try with L unit cells in each direction, so that there are
N2D ¼ 4L2 and N3D ¼ 16L3 lattice sites. The smallest
possible loop is ‘min ¼ 4ð6Þ for checkerboard (pyrochlore).

Loop length distributions.—Figure 2 presents the PDF of
the loop length obtained using the Monte Carlo worm
algorithm [17]. For the checkerboard, the PDF has a single
power-law behavior, P2d � ‘��, with � ¼ 2:14ð1Þ, in
agreement with the exact value 2þ 1=7 (Refs. [23–25]).
The situation is dramatically different for the three-
dimensional pyrochlore, where no exact value is available.
There are two different power laws: a short loop region

where the PDF scales as�L3‘�2:50ð1Þ, and then a crossover
at ‘1 � L2 to a large-‘ region with scaling �‘�0:98ð3Þ. The
second regime is due to the influence of winding loops,
which close only after crossing the periodic boundaries.

We have checked that the PDF of only nonwinding loops

has a single power law, �L3‘�5=2. In 2D, the loop distri-
bution is dominated by nonwinding loops at all ‘. This is
reminiscent of Pólya’s theorem, that a random walk in 2D
is recurrent (always returns to the initial point), while in 3D
it is transient (a finite probability never to return) [26]. In
both 2D and 3D, Pð‘Þ increases just before the cutoff at
large ‘.
Winding and nonwinding loop fractions.—In 2D, the

average number of winding loops is 1.86(1), whose length

scales as L7=4. In contrast, in the pyrochlore this number
scales as lnL. In both cases the number of nonwinding
loops is extensive. The percentage of pyrochlore sites
belonging to nonwinding and winding loops are 6.310
(5)% and 93.690(5)%, respectively. Thus a finite but small
portion of the system is covered by an extensive number of
short loops, while most of the lattice sites belong to a few
large loops.

Probability to be on the same loop.—In 2D, CðrÞ �
r�0:49ð1Þ, consistent with [25]. By contrast, in 3D, the
leading term in CðrÞ is a constant (Fig. 3); i.e., sites far
from each other have a nonzero probability to be on the
same loop—another qualitatively new feature due to wind-
ing loops.
Radius of gyration.—This is defined as R2 ¼ 1

‘ �P
‘
i¼1 jri � hrij2 where ri is the position of the ith site of

the loop of length ‘ and hri ¼ P
iri=‘. This follows a

power lawR� ‘�. As discussed in detail later, even though
our loops are self-avoiding, we do not find self-avoiding
walk exponents (3=4 in 2D and � 3=5 in 3D), but rather
�2D ¼ 0:573ð5Þ for nonwinding loops, consistent with 4=7
[23–25] and �3D ¼ 0:500ð5Þ as for a random walk.
Brownian motion (BM) analogy.—We account for the

above results by adapting the theory of Brownian motion
(or random walks or ideal chains) to this setting. The
probability for a BM starting at xo to visit position x after

‘ steps, is pðxo;x; ‘Þ ¼ ð2�‘Þ�3=2e�ðx�xoÞ2=2‘, in the
three-dimensional continuum [6,26]. Thus, the probability

to come back to the initial point is pðxo; ‘Þ ¼ ð2�‘Þ�3=2.
Summing over all possible starting positions, one obtains

FIG. 2 (color online). Probability distribution of loop lengths ‘
on the checkerboard (left) and pyrochlore (right) lattice, for
different system sizes (L ¼ 100, 400, 1000 in 2D and L ¼ 4,
14, 60 in 3D). Both axes are adequately scaled by L1=�. Note the
absence of one-parameter scaling in 3D at large ‘. Inset: Average
loop length on the pyrochlore lattice, converging with system
size to a finite value of 227.3 (dashed line).
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FIG. 3 (color online). Probability for two spins to be on the
same loop as a function of the distance between them, on
pyrochlore lattices with L ¼ 4, 8, 18, asymptoting to C1 ¼
0:293 (dashed lines), found by an extrapolation to large system
sizes (inset).
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for the loop length PDF of nonwinding loops: Pnw
3d ð‘Þ �

1
‘

P
xo
pðxo; ‘Þ � L3‘�5=2, where the factor 1=‘ compen-

sates the arbitrary starting position along the loop of size ‘.
To understand the different exponent for large ‘, we

have to consider winding loops. These may be regarded
as loops that start at a point in the ‘‘original’’ sample but
end at an equivalent point in a ‘‘copy’’ sample, arising from
periodic boundary conditions. The copies cover all space
R3. The probability for the loop reaching the equivalent
point in the ith nearest-neighbor copy at distance ri ¼ niL,

is Pði; ‘Þ ¼ ð2�‘Þ�3=2e�r2i =2‘ in 3D. The number of copies
which are ith nearest neighbors scales as 4�ðri=LÞ2 for
large i. Thus the total probability for a winding loop
starting at xo to be of size ‘ is

pðxo; ‘Þ �
X1
i¼0

4�n2i

�
1

2�‘

�
3=2

exp

�
� n2i L

2

2‘

�
� 1

L3
:

We note that pðxo; ‘Þ is independent of ‘. Summing over
all possible initial points, the total probability to have a
loop of size ‘ becomes Pw

3dð‘Þ � 1
‘

P
xo
pðxo; ‘Þ � ‘�1, in-

dependent of system size L. The crossover between the two
behaviors occurs at the length scale ‘1 � L2, i.e., when the
radius of gyration of a loop reaches the system size.

The average loop lengths h‘i in both checkerboard and
pyrochlore cases are finite. For the checkerboard, the PDF
exponent � being larger than 2 ensures a nondiverging
h‘i2D. With the approximation that P2dð‘Þ / ‘�� at all
even ‘ starting from ‘min ¼ 4, one estimates

h‘i2D ¼
� Xþ1

‘¼4;‘22N

‘:‘��

� Xþ1

‘¼4;‘22N

‘��

�
� 24:9; (1)

very close to the numerically obtained average 24.68(3).
For the pyrochlore, the combination of nonwinding

(Pnw
3d � L3‘�5=2) and winding loops (Pw

3d � ‘�1) conspire

to produce a remarkably large but finite average loop
length: h‘i3D ¼ 227:5ð5Þ. Even though they increase
h‘i3D by an order of magnitude compared to the two-
dimensional model, winding loops do not manage to
make it divergent.

Considering nonwinding and winding loops separately,
the loop length average saturates with L in the former case,
h‘in:w: ¼ 14:34ð4Þ [Eq. (1) adapted to the pyrochlore gives
15.3], while it diverges as h‘iw � L3= lnL for winding
loops.

Concerning the probability for two sites to be on the
same loop, we note that the number of spin pairs belonging
to the same loop of length ‘ is 1

2 ‘ð‘� 1ÞPð‘Þ, while there
is a total of 1

2NðN � 1Þ pairs of spins in the system. The

probability averaged over all pairs is thus

CðrÞ �
Z 8L3

6

‘ð‘� 1Þ
NðN � 1ÞP3dð‘Þd‘�OðL0Þ: (2)

The nonwinding loop contribution to this integral vanishes
at large L, but the winding loop contribution leads to a
constant term C1 ¼ Cðr ! 1Þ ¼ 0:293ð2Þ (Fig. 3).
Indeed, we note that there will be several winding loops
indexed by i in a large system, each of which contains
a finite fraction, fi, of all sites. (We found f1 � 0:41;
f2 � 0:30; f3 � 0:12 . . . ).
The ‘‘scaling function’’ displayed in Fig. 2 shows that

two length scales appear in 3D: (i) when the radius of
gyration hits the system size, ‘1 � L2, (ii) when the loop
explores the full volume, ‘2 � L3. The behavior for ‘ > ‘1
obviously is influenced by the nature of the boundary
conditions, e.g., the loops winding many times can break
up into several loops terminating on the surface [15] when
open boundaries are considered.
Worms.—The worms are efficiently evaluated as our

Monte Carlo algorithm is in fact based on constructing
worms, as flipping all spins in a worm conserves the ice
rules. For such a stochastic worm-definition, it is impos-
sible to establish a 1-to-1 mapping between spin and worm
configuration. Hence, we compute the probability for a
worm starting at a random site xo to be of length ‘; this
corresponds to pðxo; ‘Þ instead of Pð‘Þ. Again, two re-

gimes appear in 3D, an ‘�3=2 behavior (numerical expo-
nent �1:48ð4Þ) for ‘ & ‘1, and a ‘-independent region for
larger ‘, consistent with our BM analogy.
The winding worm regime implies that three-

dimensional worms on average visit a finite fraction of
the system size (� 15%, which is actually less than the
average length of a worm, as it can retrace parts of its path).
Hence, a worm algorithm only requires a finite (here, of
order 10) number of worms to decorrelate the system in
3D, independent of system size L, while the different
behavior of winding worms in 2D requires an increasing
number of worm updates for decorrelation with L.
Discussion.—Other than the importance of winding

loops, a crucial difference between 2D and 3D is the
appearance of Brownian motion (BM) exponents for the
latter case. This is analogous to polymer solutions at the�
point [4,27], where the presence of other loops perfectly
counteracts the self-avoidance in 3D, but corrections to
mean field in 2D make their statistic (�2D ¼ 4=7) fall
between the one of random walks (� ¼ 1=2) and self-
avoiding walks (� ¼ 3=4). We next discuss this issue
from a different vantage point.
First, note that our two-dimensional loops can be

mapped onto a bond percolation problem on the square
lattice, with bonds painted in either color with probability
p ¼ 1=2. While the ice-rules do impose a local constraint,
it has been argued that neither short-range nor sufficiently
rapidly decaying algebraic long-range correlations (like
the r�D correlations in our model) influence the percola-
tion critical exponents [28]. Since loops of the same color
cannot cross or branch, each loop is at the same time the
external perimeter (‘‘hull’’) of a percolation domain,
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whose fractal dimension is Df ¼ 1=�2D ¼ 7=4 [23]. Also,

the number of winding loops should be finite (we find
1.86), as the number of percolating domains is typically
of order Oð1Þ for a square system at criticality.

Now, we can place this in the context of a family of
continuous nonbranching growing processes, namely,
Schramm-Loewner evolutions SLE�2½0:16�. Each SLE� is

described by a 1D Brownian motion with diffusion con-
stant �, and fractal dimension Df ¼ 1þ �=8, capturing

the scaling properties of conformally invariant 2D critical
interfaces (see [3] for a review). Hence, we expect our
loops with Df ¼ 7=4 to correspond to SLE6, if any; in-

deed, percolation hulls can be rigorously identified to SLE6

[29]. This is also the only SLE� process with the locality
property [2,3]. Hence the value of �2D ¼ 4=7may not only
be a correction to mean field, but also a signature of
locality. A more direct proof of locality of the loops in
the Coulomb phase, without referring to percolation,
would be worthwhile investigating.

We note that SLE6 is also related to BM: it describes the
pioneer points, rather than frontier points (with Df ¼ 4=3)

or the full BM (for definitions, see footnote [2,30,31]). This
identification is a priori nontrivial, as all points of non-
intersecting walks on a lattice, as our loops, are both
pioneer and frontier points. Now in 3D, it appears to us
that all points of a BM can be connected to infinity and thus
are both pioneer and frontier points, so that these distinc-
tions become moot. This may justify a posteriori why the
three-dimensional versions of those models—tricolor per-
colation [32], � point [4], and the present work—display
the exponent of BM [33]. Further work in this direction,
also for other SLE� processes, is necessary for a proper
understanding of the connection between fractal dimen-
sions in two- and three-dimensional statistical models.

Conceptual and experimental implications.—From
many possible analogous models in 2D and 3D, we have
managed to identify our loops exponents with those of the
pioneer points of a BM. This was not necessarily to be
expected a priori, as the divergence-free condition of the
Coulomb phase, besides creating the loops, imposes much
additional structure, such as an emergent gauge field and
algebraic spin correlations.

In the context of spin ice, worms play an important
conceptual role as they describe the tension-free (emer-
gent) flux loops characteristic of the Coulomb phase. Here
we have shown that their statistics resembles that of a
Brownian motion in 3D. Since, in a magnetic field B, the
worms have been used as an experimental diagnostic of the
Coulomb phase [19], a more detailed study as a function of
B would be worthwhile. Indeed, by applying uniaxial
pressure, interactions between worms can be tuned [34].

On the two-dimensional front, advances on magnetic
lithography make the observation of loops and worms
a realistic prospect in artificial spin ice via magnetic
force microscopy [35] or x-ray photoemission electron

microscopy [36]. Heating-cooling cycles can provide in-
dependent sampling, and the average fractal dimension of
those loops would be a measure of the influence of the
dipolar interactions present in these materials.
To the best of our knowledge, our loops first appeared in

Villain’s seminal paper in the context of a model of pyro-
chlore Heisenberg magnets with two species of magnetic
ions [12], that could be applied to the CsNiCrF6 compound
[11,13]. Villain already noted the possibility of two (re-
current and transient) loop populations, which also show
up for cosmic strings [5,6] and laser speckles [8].
In Villain’s model, each loop has a distinct color encod-

ing the direction of its Heisenberg spin (which is continu-
ously variable and hence the number of colors is infinite),
and spins are correlated only if they belong to the same
loop. A finite value of C1 thus implies long-range spin
order. Here we comment on two noteworthy features. First,
the presence of several loops of size OðL3Þ implies coex-
istence of several spatially intertwined but independent
populations of long-range ordered spins, as opposed to
the two-color loop model in spin ice materials where the
Ising nature of the spin ensures a perfect cancellation of the
correlations at long distance, in agreement with algebrai-
cally decaying correlations [10]. Second, a short-range
interacting classical spin Hamiltonian of the kind envis-
aged by Villain allows gapless excitations for the
Heisenberg spins. Thermal fluctuations out of this set of
states could lock these populations into a more conven-
tional collinear ordered structure before destroying the
order completely as T increases. As the loops reflect
quenched ion disorder in compounds such as CsNiCrF6,
the signature of developing (fractal) loop correlations can
look highly unconventional when probed with, e.g., neu-
trons. This is clearly a productive field for more detailed
studies, as well as the dynamics of the large interpenetrat-
ing clusters.
Indeed, the loops are perhaps most naturally probed as a

nonlocal correlation function. For instance, for a system of
electrons which can hop only along a loop, the existence of
the winding loops shows up in conductivity properties, as
we will discuss elsewhere [15].
If one assigns a weight to each loop reflecting the

number of flavors, n, it can take (which is not what is
done in Villain’s model, whose colors are used to distin-
guish the loops, not to weigh them), it becomes more
favorable to have many, short loops as n grows. There is
an extended literature on loop models, with some three-
dimensional work [37,38], from which it is known that a
phase transition results. In our case, an n ¼ 1 state is the
‘‘hexagonal protectorate’’ loop crystal proposed in the
context of magnetodistortive phase transitions in the spinel
compound ZnCr2O4 [39]. This has only loops of length 6
and breaks lattice translation symmetry. Further studies
of these models, e.g., a quantum version thereof, are
ongoing [40].
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