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We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots,

extending the number of maxima method originally proposed for the statistical analysis of compound

nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless

conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation

function of TðZÞ. The parameter Z can be associated with an applied gate voltage causing shape

deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of

maxima is found to be h�Zi ¼ �Z=Zc, where �Z is a universal constant and Zc is the conductance

autocorrelation length, which is system specific. The analysis of h�Zi does not require large statistic

samples, providing a quite amenable way to access information about parametric correlations, such as Zc.
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Introduction.—The statistical properties of the elec-
tronic transport in ballistic open quantum dots (QDs)
have been intensively studied over the last decades [1–3].
In such systems, the conductance can be described by the
Landauer formula and, for QDs containing a large number
of electrons, the random matrix theory (RMT) provides an
excellent statistical description of the underlying chaotic
electronic dynamics at the Fermi energy [3,4]. RMT ex-
plains the observed universal conductance fluctuations in
QDs, which depend only on the QD symmetries, such as
time reversal, and on the number of open modes N con-
necting the QD to its source and drain reservoirs [1].

In the semiclassical limit of large N, the transmission
statistical fluctuations are accurately modeled by Gaussian
processes. In practice, it has been experimentally observed
[5] and theoretically explained [6] that, even for small
values of N and at very low temperatures, dephasing
quickly brings the QD conductance fluctuations close to
the Gaussian limit.

The conductance in open ballistic QDs exhibits random
fluctuations as an external parameter, such as a magnetic
field B or an applied gate voltage Vg, is varied. By identi-

fying running averages with ensemble averages, it is cus-
tomary to accumulate statistics by varying as many
parameters as the experimental setup allows. This invites
one to ask whether useful statistical information can be
extracted from the analysis of a single conductance curve.
Inspired by the formal analogy between conductance and
compound-nucleus Ericson fluctuations [7] we show that
the answer is positive. More specifically, we further de-
velop ideas originated in the context of nuclear physics [8],
to calculate the conductance average density of maxima
and show its relation with the conductance autocorrelation
function. As a result, we propose a new universal measure
for the conductance of ballistic open QDs.

Theoretical framework.—We consider the standard set-
ting of a two-probe open quantum dot coupled by leads to a
source and to a drain electronic reservoir. We also assume
that the source (drain) reservoir is coupled to the quantum
dot by a lead that has N1 (N2) open modes. The scattering
matrix S describing the electron flow is given by [3]

S ¼ r t
t0 r0

� �
; (1)

where r (r0) is the N1 � N1 (N2 � N2) matrix containing
the reflection amplitudes of scattering processes involving
channels at the source (drain) coupled leads, while t (t0) is
the N1 � N2 (N2 � N1) matrix built by the transmission
amplitudes connecting channels that belong to the source-
coupled lead to the modes at the drain-coupled lead (and
vice versa).
At zero temperature, the linear conductance G of an

open quantum dot is given by the Landauer formula

G ¼ 2e2

h
T with T ¼ trðtytÞ; (2)

where the factor 2 accounts for spin degeneracy and T is
the dimensionless conductance or transmission, which
typically depends on N1 and N2, the quantum dot shape,
the external magnetic field B, the electron energy ", etc.
In the limit of large number of open modes, the average

transmission for a chaotic QD is [9]

hTi ¼ N1N2

N1 þ N2

� ��;1

4
; (3)

where h� � �i indicates that an ensemble average was
taken and � ¼ 1 (� ¼ 2) corresponds to the orthogonal
(unitary) case of preserved (broken) time-reversal symme-
try. In the same limit, the transmission correlation function
reads [10–12]
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hTflð�; XÞTflð�0; X0Þi ¼ var�ðTÞ
½1þ ð�X=XcÞ2�2 þ ð�"=�Þ2 ; (4)

where var�ðTÞ ¼ ð1þ ��;1Þ=16. To simplify the notation,

we introduce Tflð"; XÞ ¼ Tð"; XÞ � hTi, where " is the
electron energy and X is a generic parameter that describes
a certain quantum dot shape belonging to a path of defor-
mations caused by, for instance, applying a certain gate
potential. The correlation function given by Eq. (4) is
universal, with correlation length scales, Xc and �, that
are system dependent. There is a simple expression that
relates � to the mean resonance spacing �, namely, � ¼
ðN1 þ N2Þ�=2� [13]. The correlation length � is generally
different from the ‘‘lifetime’’ or decay width, which is
twice the imaginary part of the pole energy of the scatter-
ing matrix. Both quantities only coincide when � � �, a
condition never met in open QDs.

Density of maxima.—The transmission or dimensionless
conductance TðZÞ as a function of a generic parameter Z
(either " or X) has a maxima in the interval [Z, Zþ �Z] if

T0ðZÞ> 0 and T0ðZþ �ZÞ< 0; (5)

provided �Z is small. In this case, Eq. (5) implies that

� T00ðZÞ�Z > T0ðZÞ> 0: (6)

For convenience we introduce T0 and T00 to denote the first
and second derivatives of the dimensionless conductance T
with respect to Z.

The joint probability distribution PðT0; T00Þ allows one to
obtain the average density of maxima h�Zi [8]: The proba-
bility to find a maximum in the interval [Z, Zþ �Z] is the
integral of P over the region defined in Eq. (6), that isZ 0

�1
dT00 Z �T00�Z

0
dT0PðT0; T00Þ

¼ ��Z
Z 0

�1
dT00T00Pð0; T00Þ � �Zh�Zi: (7)

Let us infer PðT0; T00Þ by examining the lowest moments
of T0 and T00. Since the statistical properties of the dimen-
sionless conductance are invariant under Z translations, T0
and T00 have zero mean. Their variance is directly related to
the correlation function

CZð�ZÞ ¼ hTflðZþ a�ZÞTflðZ� b�ZÞi; (8)

which does not depend on the choice of a and b, provided
aþ b ¼ 1. Neither do so the derivatives ofCZ with respect
to �Z, which leads to

h½T0�2i ¼ � d2

dð�ZÞ2 CZð�ZÞj�Z¼0

hTT00i ¼ d2

dð�ZÞ2 CZð�ZÞj�Z¼0;

h½T00�2i ¼ d4

dð�ZÞ4 CZð�ZÞj�Z¼0;

(9)

and hTT0i ¼ hT0T00i ¼ 0. These results coincide and ex-
pand those obtained in Ref. [14].
We use the above relations and the maximum informa-

tion principle to build the joint probability distribution of
the transmission T and its derivatives, T0 and T00. The
distribution PðT0; T00Þ is found by integrating over T, and
gives

Pð0; T00Þ ¼ 1

2�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih½T0�2ih½T00�2ip exp

�
� 1

2

½T00�2
h½T00�2i

�
: (10)

Thus, the integral in Eq. (7) renders

h�Zi ¼ 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½T00�2i
h½T0�2i

s
: (11)

This result, obtained with the help of the maximum infor-
mation principle, is expected to be accurate in the large
N1 þ N2 limit due to the central limit theorem [15]. In the

opposite limit of small N1 þ N2, the ratio hTi=½varðTÞ�1=2
is no longer large and the constraint T � 0 gives rise to
nontrivial correlations between the transmission and its
derivatives, as well as deviations from the Gaussian
distribution.
In the case where the external parameter Z is the electron

energy " and N1 þ N2 � 1, the correlation function C"

given by Eq. (4) reduces to a Lorentzian

C"ð�"Þ ¼
var�ðTÞ

1þ �"2=�2
: (12)

Such a correlation function gives

h�"i ¼
ffiffiffi
3

p
��

	 0:55

�
: (13)

Hence, by counting the average number of maxima in
conductance one can infer the conductance correlation
width. This idea was originally proposed as complemen-
tary to the analysis of the Ericson fluctuations in
compound-nucleus reactions [8,16,17]. The analysis of
Ref. [16], seemingly different from ours [18], gives the
same result as above.
Support to our analytical findings is provided by nu-

merical simulations employing the Hamiltonian approach
to the statistical S matrix [19], namely

Sð"Þ ¼ 1� 2�iWyð"�Hþ i�WWyÞ�1W; (14)

where " is the electron propagation energy and H is the
matrix of dimension M�M that describes the resonant
states. H is taken as a member of the Gaussian orthogonal
(unitary) ensemble for the (broken) time-reversal symmet-
ric case. The matrix W of dimension M� ðN1 þ N2Þ con-
tains the channel-resonance coupling matrix elements.
Since the H matrix is statistically invariant under orthogo-
nal (� ¼ 1) or unitary (� ¼ 2) transformations, the statis-
tical properties of S depend only on the mean resonance
spacing �, determined by H, and WyW. We assume a

PRL 107, 176807 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 OCTOBER 2011

176807-2



perfect coupling between channels and resonances, which
corresponds to maximizing the average transmission fol-
lowing a procedure described in Ref. [19]. In this Letter we
restrict our numerical analysis to the � ¼ 1 case and, for
simplicity, we take the case of N � N1 ¼ N2. We bench-
marked the accuracy of the simulations by an extensive
comparison between numerical simulations and analytical
results [9] for hTi and varðTÞ as a function of N.

Figure 1 illustrates the transmission Tð"Þ for a typical
realization of the matrix model given by Eq. (14), forN¼5
perfectly coupled modes close to the band center. The
transmission correlation length is given by the Weisskopf
estimate [13], namely, � ¼ ðN1 þ N2Þ�=2� ¼ N�=�.

Figure 2 shows the transmission autocorrelation func-
tion C"ð�"Þ obtained from the model given by Eq. (14), for
N perfectly coupled modes. The ensemble average is taken

over 200 realizations of theH matrices withM ¼ 200. The
random matrix theory [19] predicts an autocorrelation
length � ¼ N�=�, which is nicely verified by the
simulations.
Figure 3 shows the average density of maxima h�"i in

units of 1=� as a function of the number of open channels
N. We observe that the agreement with the Gaussian
process prediction becomes remarkably good as N is
increased.
Let us switch our analysis to the case where an

external parameter modifies the QD Hamiltonian, namely,
H ¼ HðXÞ. Taking �" ¼ 0, the transmission autocorrela-
tion function, Eq. (4), becomes a Lorentzian squared [10]

CXð�XÞ ¼
var�ðTÞ

½1þ ð�X=XcÞ2�2
: (15)

This correlation function gives for h�Xi

h�Xi ¼ 3

�
ffiffiffi
2

p
Xc

	 0:68

Xc

: (16)

The above result is new and is tested through numerical
simulations in what follows.
To statistically model HðXÞ we take H ¼ H1 cosX þ

H2 sinX [20], where both H1 and H2 belong to a
Gaussian ensemble. The transmission TðXÞ is obtained
by computing the S matrix defined by Eq. (14) at " ¼ 0
for 1000 realizations of the HðXÞ with M ¼ 200. Figure 4
shows that a Lorentzian squared adjusts very nicely the
numerically obtained correlation functions upon rescaling
X by Xc.
In distinction to the previous case, where a simple

analytical expression for � is known, here we determine
Xc numerically. Using semiclassical arguments, it can be
shown [21] that the effect of a perturbation grows diffu-
sively with the electron dwell time tD in the quantum dot,

FIG. 1 (color online). Typical dimensionless conductance T as
a function of " for N ¼ 5 and perfectly transmitting modes (no
direct processes). Black dots stand for the numerical results for a
single realization of H and the dotted line indicates the RMT
prediction for hTi.

FIG. 2 (color online). Normalized transmission autocorrela-
tion function ~C"ð�"Þ ¼ C"ð�"Þ=varðTÞ as a function of the
energy �". Symbols correspond to ensemble averages for a
different number of channels N. The statistical errors are smaller
than the symbol sizes. The solid line stands for ~C"ð�"Þ given by
Eq. (12).

FIG. 3 (color online). Density of maxima h�"i� as a function
of the number of open channels N. The symbols with statistical
error bars correspond to our numerical simulations. The dashed
line stands for the Gaussian process prediction.

PRL 107, 176807 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 OCTOBER 2011

176807-3



which scales as tD 
 1=N. Hence Xc 

ffiffiffiffi
N

p
, in excellent

agreement with our numerical findings, shown in the inset
of Fig. 4.

Figure 5 summarizes our numerical results for the case
of parametric Hamiltonian changes: The density h�Xi in-
creases withN and rapidly saturates at a value in very good
agreement with our Gaussian process prediction given by
Eq. (16).

Conclusions.—In this work we extended the number
of maxima method, originally employed in compound
nuclear reactions, to open chaotic QDs. We have shown
that the average density of maxima in the dimensionless
conductance is inversely proportional to its autocorrelation
length. For parametric variations that give rise to a
Lorentzian-like transmission autocorrelation function,
like variations in the electron energy, the universal propor-

tionality constant is
ffiffiffi
3

p
=�. For parametric changes that

lead to squared Lorentzian-like transmission correlations,

such as gate potential variations, the universal proportion-

ality factor is 3=ð� ffiffiffi
2

p Þ. These results are obtained by
assuming that the transmission derivatives are Gaussian
distributed, which is expected to be rather accurate in the
semiclassical limit of large N. We employ numerical simu-
lations to infer the precision of our results for an arbitrary
N. We show that even for moderate values of N the
semiclassical prediction gives already qualitatively good
results, within about 10% precision. Our results may prove
useful for the analysis of measurements of the transmission
in chaotic quantum dots: By counting the maxima of a
simple magnetoconductance trace, it is possible to estimate
with a rather good precision the dimensionless autocorre-
lation function. More generally, ballistic mesoscopic sys-
tems (and potentially diffusive ones) showing conductance
fluctuations, such as graphene flakes [22–24], are also
potentially amenable to this analysis.
This work is supported in part by the Brazilian funding

agencies CAPES, CNPq, FAPESP, and the Instituto
Nacional de Ciência e Tecnologia de Informação
Quântica-MCT.
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