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Electron transport through a normal-metal–quantum-dot–topological-superconductor junction is

studied and reveals interlacing physics of Kondo correlations with two Majorana fermions bound states

residing on the opposite ends of the topological superconductor. When the strength of the Majorana

fermion coupling exceeds the temperature T, this combination of Kondo-Majorana fermion physics might

be amenable for an experimental test: The usual peak of the temperature dependent zero bias conductance

�ðV ¼ 0; TÞ splits and the conductance has a dip at T ¼ 0. The heights of the conductance side peaks

decrease with magnetic field.
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Introduction.—Recent theoretical investigations of topo-
logical materials reveal that topological superconductors
can host Majorana fermions (MF) [1–8]. Specifically,
Majorana bound states (MBS) reside at the opposite ends
of a 1D topological superconductor (TS). Interest in the
physics of Majorana quasiparticles is due to their non-
Abelian statistics [9]. Hopefully, MBS can be realized on
a 1D edge of a 2D quantum spin Hall insulator with super-
conducting gap induced by proximity effect [10,11], or at
the ends of a 1D semiconducting wire with spin-orbit
coupling, in proximity with an s-wave superconductor
[3,5]. In both cases a 1D TS is formed. Two MF can form
a neutral Dirac fermion, but its detection requires nonlocal
measurements. The physics of MBS might also be probed
in a tunneling process [12–14], namely, a local measure-
ment sensitive to interference between various MBS.

Present work.—Motivated by the above findings, we
consider as in Fig. 1 electron tunneling through
a normal-metal–quantum-dot–topological-superconductor
(NM-QD-TS) junction composed of NM lead, QD, and 1D
TS. [Direct NM-TS tunneling conductance (without a dot)
in 1D TS was considered in [15].] For the TS we analyze a
particularly simple system: a 1D semiconducting wire with
strong Rashba spin-orbit coupling, brought into proximity
with an s-wave superconductor [16,17]. To drive the wire
into a topological state one may subject it to a perpendicu-
lar magnetic field B [3] (that might also act on the dot). In
the absence of interaction, the topological transition takes
place at rather strong field (B> �). However, recent analy-
ses [16(b)] that incorporate strong repulsive interaction
extend the parameter range over which the TS phase exists,
achieving a TS phase even at zero magnetic field. Since the
TS hosts two MBS on its ends [16,18], then, within a
reasonable approximation, the tunneling problem is re-
duced to that of transport in a NM-QD-MBS junction.
Our interest is focused on the interrelation between the
Kondo physics prevailing in the quantum dot and the MBS
physics prevailing on the TS. The analysis is naturally

divided into the weak (T � TK) and strong (T < TK)
coupling regimes, where TK is the Kondo temperature.
The effect of a magnetic field acting on the dot (through
a Zeeman term) is also analyzed.
The central point of our analysis is that the Kondo effect

in tunneling through QD is a useful tool for identifying
MBS at the ends of TS due to the strong temperature
dependence of the zero bias conductance, which, in itself,
is sensitive to the unique (length dependent) interaction of
the two MF. In other words, the Kondo effect determines
the temperature dependence of the conductance for differ-
ent MF couplings, a property that is exposed by plotting the
zero bias conductance as function of temperature (see
Fig. 5 below).
Junction Hamiltonian.—The system’s HamiltonianH ¼

H0 þHA þHM includes the following components (see
Fig. 1). (1) H0 for the normal-metal lead, held at bias
voltage V. (2) The Anderson Hamiltonian HA ¼
HTS-NM þHQD for QD hybridized with the normal-metal

lead and the TS. (3) The Majorana term HM describes
coupling of strength � between two MF 1; 2 on the left
and right ends of the TS. Employing Nambu formalism in
four-dimensional ðspinÞ � ðelectron-holeÞ space, where
fermion operators (c for the lead and d for the dot) are

written as c ¼ ðc"; c#; cy# ;�cy" ÞT , we have

H0 ¼ 1

2

X
k

"kc
y
k�zck;

HTS-NM ¼ 1

2
½dy�zV̂�1 þ tdy�zcð0Þ� þ H:c:;

Hd ¼ 1

2
½"dy�zdþUnd"nd#�;

HM ¼ i

2

X2
i;j¼1

�̂ij�i�j:

(1)

Here �i (i ¼ 1; 2) are MF operators satisfying �i ¼ �y
i ,

�2
i ¼ 1 coupled by an antisymmetric 2 � 2 matrix
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�̂ ¼ �
0 1
�1 0

� �
:

cð0Þ is the normal-metal lead electron operator at the QD
position x ¼ 0. The coupling between the quantum dot and
Majorana states is proportional to the Majorana wave
function at x ¼ 0; hence, it strongly depends on the
Rashba spin-orbit coupling. The coupling is presented by
a vector which has a form depending on the direction of B.

In our case [3] this vector is V̂i ¼ ð�"; �#; ��
# ;���

" ÞT . The
Pauli � matrices act on ðc�;d�;��Þ and ðcy�; dy�;��

�Þ
blocks. Below we put �" ¼ �, �# ¼ �i� [18]. Applying

Schrieffer-Wolff transformation on HA the Kondo
Hamiltonian HK ¼ HLK þHKM þ BSz with Zeeman en-
ergy is derived. In Nambu space we have

HLK ¼ JL
2
cyð0ÞQ�zcð0Þ;

HKM ¼ t

j"j ½c
yð0ÞQ�zV̂�1 þ H:c:�:

(2)

The Kondo coupling constant JL ¼ 2jtj2=j"j to the normal
metal is expressed in terms of the tunneling amplitude t
and the dot level position ", with j"j � � ¼ 2�jtj2Nð0Þ
[Nð0Þ is the density of states of lead electrons at the

Fermi energy "F ¼ 0]. Here Q ¼ 1
4 I � I þ ½~s � ~S� � �z is

the Nambu space extension of the exchange interaction in
which ~s is the operator of electron spin. Within the Keldysh
formalism, we use Green’s functions (GF) for the normal-
metal lead electrons integrated over momentum

�g ¼ 1

2�
�kgk ¼ �g11 �g<

�g> �g22

� �
;

with entries as 4� 4 diagonal matrices,

�g11ð!Þ ¼ �g22ð!Þ ¼ i

2
Nð0Þ½I � diagðf�; f�; fþ; fþÞ�;

�g<ð!Þ ¼ � �g>ð�!Þ ¼ iNð0Þdiagðf�; f�; fþ; fþÞ;
where f� ¼ fð!� eVÞ, fð!Þ being the Fermi distribution
function for the metal lead electrons. The GF matrix in a
rotated Keldysh basis is defined as ~g ¼ K �g�̂zK

�1, where
the Pauli matrices �̂ act in Keldysh space and

K ¼ 1ffiffiffi
2

p 1 �1
1 1

� �
:

The energy gap � of the superconductor is taken to be
the highest energy scale. At low bias eV < �, and in the
weak coupling limit T � TK, it is justified to project the
Majorana quasiparticle operator in the superconductor
on its zero energy sector [18,19]. To average over a product
of dot spin operators we express them in terms of mixed
Dirac (f; fy) and Majorana (�x; �y; �z) fermions [20]:

Sþ ¼ �zf
y, S� ¼ f�z, Sz ¼�i�x�y, f¼ ð�x� i�yÞ=ffiffiffi

2
p

. The Keldysh GFs for these fermions are

F<
f ð�Þ ¼ 2�ifðBÞ	ð��BÞ; FR

f ð�Þ ¼
1

��Bþ i	
;

F<
z ð�Þ ¼�i	ð�Þ; FR

z ð�Þ ¼ 1

�þ i	
:

(3)

The components of the Keldysh matrix GF of the
Majorana fermions at the ends of TS as derived from HM

[Eq. (2)] are given by ½GR��1 ¼ 1
2 ½i@t � 2i�̂�, G<ð!Þ ¼

�2ifð!Þ ImGRð!Þ.
Nonlinear conductance: weak coupling regime.—The

current operator is Ĵ ¼ e dN̂L

dt ¼ ie
@

t
j"j c

yð0ÞQV̂�1 þ H:c:,

where N̂L is the number operator of the normal-metal
lead. Evaluating the current diagrams in the weak coupling
limit (Fig. 2) yields the total conductance � ¼ dJ

dV up to

third order in JL,

� ¼ 
Wð2�Þ
�
1þ 3

�
RðBÞ þ �KðBÞ

�j"j
��

	 �p þ �ex; (4)

where 
 ¼ �e2

2h �j�j2=ðT"2Þ is the tunneling rate and

WðxÞ ¼
�
cosh�2 xþ eV

2T
þ cosh�2 x� eV

2T

��
2;

RðBÞ ¼ ½rðBÞ þ rð�BÞ�=3;
KðBÞ ¼ �ðBÞ þ �ð�BÞ;

rðBÞ ¼ 1

2
cosh�2 B

2T
þWðBþ 2�Þ

Wð2�Þ
�
1þ tanh

B

2T
tanh

�

T

�
;

�ðBÞ ¼ 1

6
cosh�2 B

2T
Lð2�þ BÞ þWð2�� BÞ

Wð2�Þ ½Lð2�Þ

þ Lð2�� BÞ�
�
1� tanh

B

2T
tanh

�

T

�
:

There is a clear separation between potential and spin
scattering. The third order contribution to the conductance
includes large logarithmic terms, that is the hallmark of the
Kondo effect in a tunneling system with topological super-
conductor. They are associated with the function LðxÞ ¼
1
2 ½ln Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�eVÞ2þT2
p þ ln Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþeVÞ2þT2
p � (here the bandwidth D

serves as a high energy cutoff). Only these dominant
logarithmic terms are retained. In the zero field limit
(B ! 0) RðBÞ ! 1, KðB ! 0Þ ¼ Lð2�Þ, and the total con-
ductance becomes

FIG. 1 (color online). NM-QD-TS junction. An applied mag-
netic field can induce MBS at the ends of the TS wire. The QD
can be gated to adjust the level position in the dot.
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� ¼ 
Wð2�Þ
�
1þ 3

�
1þ �

�j"jLð2�Þ
��

: (5)

In Fig. 3 the total nonlinear conductance is displayed as
function of the applied voltage. Two distinct peaks are
resolved as the coupling energy � of the MF exceeds the
temperature, a fact which has natural experimental impli-
cations. This is one of the central results of the present
study since it combines the Kondo and Majorana fermion
physics and encourages experimental activity in searching
a realization of MF. The magnetic field B ¼ 3 T can
exceed � that is strong enough to form TS in the wire

without interaction. Under magnetic field the heights of the
peaks decrease and reveal the more complicated structure
of �ðVÞ. Kondo correlations can also be studied through
the temperature dependence of the zero bias conductance
Gt in the region TK < T < �, as displayed in Fig. 4. Note
that Gt in Fig. 4 correlates with Fig. 3: For TK < T < � the
total zero bias conductance strongly decreases with T,
while for � < T it has a shallow peak.
The Kondo temperature TK ¼ D exp½��j"j=�� is de-

termined solely by interaction with the normal-metal lead.
The poor-man’s scaling renormalization group (RG) equa-
tions read

dJL
d lnD

¼ �Nð0ÞJ2L;
dJLR
d lnD

¼ �Nð0ÞJLJLR; (6)

where JLR ¼ 2tj�j=j"j. The solution of these equations
defines the above expression for the Kondo temperature
and the conductance,

Gpeak ¼ �2e2

h

�2

jtj2
Wð2�þ BÞ

Nð0ÞT
1

ln2ðdð�;BÞTK
Þ ; (7)

where dð�; BÞ ¼ fðT2 þ 4�2Þ½T2 þ ð2�þ BÞ2�g1=4. The
RG equations (6) show that the Kondo instability is related
to the normal-metal lead while the impact of resonance
tunneling through the MBS on TK is irrelevant. The scaling
invariance of the exchange part of the conductance
implies d�ex=d lnD ¼ 0, in agreement with the second
RG equation (6).
Zero bias conductance: strong coupling regime

T < TK.—Here, the mean field slave boson approximation
(MFSBA) is used to evaluate the zero bias tunneling con-
ductance. As in the weak coupling limit, we neglect the
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G

FIG. 3 (color online). The total nonlinear conductance (4)
G ¼ �=
 versus applied bias. The central high peak and lower
plateau correspond to � ¼ 0:4 T, D ¼ 1000 T but different
values of magnetic field: B ¼ 0 for the peak and B ¼ 3 T for
the plateau. The same for the dashed and dotted dashed curves,
the only difference is that � ¼ 2:4 T. For all four curves we
assume �=ð2�"Þ ¼ 0:1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

T

G
,

G
t

FIG. 4 (color online). Zero bias conductance as function of
temperature in the region TK < T < � at zero magnetic field.
G ¼ �ð2Þ=ð
T=�Þ is the second order contribution (dashed line),
while Gt stands for the total conductance in the same units as G
(solid line). We take � ¼ 0:4� and use the value �=ð2�"Þ ¼ 0:1.

FIG. 2. Diagrams contributing to the conductance due to the
Kondo interaction (2). Upper (lower) panel represents second
(third) order contributions. Thick solid line: Majorana GF; thin
solid lines: lead fermions GF dashed and dotted lines: impurity
spin. Dotted line is the Majorana Fz GF, and dashed line is the
Dirac fermion Ff GF. The left vertex in both sets has Keldysh

index 1, other vertices have �z Pauli matrix acting in Keldysh
space.
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continuous spectrum above the superconductor gap (in the
weak coupling limit this condition is automatically satis-
fied and the MBS effectively represent the topological
superconductor). To implement it in the strong coupling
limit we assume the inequality �S < � (in addition to the
conditions � � T; eV; TK). Here �S is the tunneling
width into the TS. Then the contribution to the conduc-
tance from the continuous spectrum, proportional (at reso-
nance) to �c 
 4ð�S=�Þ2, is indeed very small [21]. Thus,
if T � TK, then, unlike the case T � TK, the condition
� � TK has to be supplemented by the inequality �S < �
in order to justify the small contribution of the continuous
spectrum of the superconductor. If the magnetic field is
excluded from the dot it may be strong, B>�. Otherwise,
B< TK to ensure the Kondo effect. This is below the
window for achieving the TS phase in the noninteraction
limit. However, the strong interactions prevailing in the
dot can favor the TS phase even for weak magnetic fields
[16(b)].

In the limit U ! 1 (1), employing the slave boson
technique, the dot is empty or singly occupied. The elec-

tron creation operator is written as dy� ¼ fy�b, where the

slave fermion fy� and the slave boson b mimic the singly

occupied and empty dot states. The constraint
P

�d
y
�d� þ

byb ¼ 1 is encoded by including a Lagrange multiplier �c

in the total action S. At the mean field level the constraint is
satisfied only on the average.

The partition functional Zð�qÞ is computed by integrat-

ing the action over slave fermion andMajorana fields. Here
the source field �q is coupled to the current operator

Î ¼ ietdycð0Þ=@þ H:c:. The resulting effective action (in
the MFSBA) is Gaussian and depends on two c-number
parameters: the boson field b0 and the chemical potential
(Lagrange multiplier) �c. Integrating the effective action
leads to the fermion part of the partition function,

lnZfð�qÞ ¼ tr ln

��i

2
ðG�1

f � �q�b
2
0�z½~g; �̂x�Þ

�
; (8)

where G�1
f ¼ G�1

f0 � b20�̂ is the inverse dot total GF and

trace is carried out over Keldysh space as well. The inverse
GF ½G�1R

f0 � ¼ �0 � ði@t � ~"�zÞ describes the noninteract-

ing level with energy shift " ! ~" ¼ "þ �c. The vertex

matrix reads �̂ ¼ �~gþ �zV̂G11�̂xV̂
y�z. Here,

G11 ¼ GK
11 GR

11

GA
11 0

� �

is the Majorana GF of the �1 state. The matrix elements of

�̂ are obtained,

2 Im�Rð!Þ ¼ ��þ 2j�j2 ImGR
11ð!Þð1� �̂Þ;

�Kð!Þ ¼ � �gK þ 2ij�j2ð1� �̂Þ tanh!
2T

ImGR
11;

(9)

where �̂ ¼ �y � �z þ �z � �x þ �x � �y. The current is

given by

I ¼ @ lnZ

@�q
¼ �ie�b40

2@
tr½ðGR

f�
KGA

f þ 2GR
f Im�RGA

f �g
KÞ�z�:
(10)

The MFSBA is quite reliable in equilibrium V ! 0.
Therefore, we consider below the temperature dependence
of the zero bias conductance for different couplings be-
tween two MBS. In equilibrium, the mean field solutions
for b0 and �c minimize the free energy F, yielding F ¼
�T

P
!n
tr ln½G�1

f ð!nÞ� þ �cb
2
0, where the last term is the

slave boson part of the free energy due to the constraint.
The Matsubara GF of the dot, Gf, is easily obtained from

GR
f ð!Þ. Because of the conditions �S < � and TK � �,

the contribution of the continuous spectrum above the
superconducting energy gap can be neglected. The mean
field equations are

b20 � 1 ¼ �T
X
!n

tr½�zGfð!nÞ�;

�c ¼ �T
X
!n

tr½Gfð!nÞ�̂ð!nÞ�;

where the first equation fixes the level position ~". In the
Kondo regime the level is singly occupied, ~" ¼ 0 for
�c ¼ j"j. This approximate solution of the second equa-
tion for �c is inserted in the first equation to yield a non-
trivial solution (b0 � 0) for the boson field in terms of the
Kondo temperature. Nonlogarithmic terms in the second
equation are discarded in the Kondo regime. Direct calcu-
lations show that such logarithms appear only for normal-
metal lead and all terms related to the MBS can be safely
neglected. Thus, b20�=2 ¼ TK (TK was defined above for

the N lead), in agreement with the weak coupling analysis
(6). For T < TK, Eq. (10) yields a close expression for the
linear conductance

�

G0
¼ g2�g

2
�

Z 1

0

dx

cosh2x

u2ðxÞ þ v2ðxÞ
ðx2 þ g2�ÞAðxÞ

; (11)

where AðxÞ ¼ x2 þ½g� �g�vðxÞ�2 þg2�u
2ðxÞ� 2xg�vðxÞ,

G0 ¼ 2e2=h, and the real functions u; v are defined from
uðxÞ þ ivðxÞ ¼ x=½ðxþ i	Þ2 � ~�2�. Pertinent dimension-
less parameters are the interaction energy of MF
~� ¼ �=T and the tunneling rates g� ¼ �b20=4T ¼
TK=2T, g� ¼ 2j�j2b20=T2. Figure 5 displays the linear

conductance at zero bias versus temperature for two values
of the Majorana fermion coupling energy � and j�j2 ¼
�TK=8. It displays a similar dependence on temperature as
in the weak coupling limit T > TK shown in Fig. 4. In both
cases, when � < T, the fall off of the peak occurs at lower
temperature, whereas for � > T a wide and shallow dip
emerges.
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Conclusions—The Keldysh technique has been em-
ployed to calculate the linear and nonlinear conductance
in a system consisting of a quantum dot (tuned to the
Kondo regime) connected to a metal lead on the left side
and 1D TS hosting Majorana bound states on the right side.
Under certain approximations the problem reduces to
that of a NM-QD-MBS tunneling system in both the
weak (T � TK) and strong (T < TK) coupling limits.
Renormalization group analysis is performed in the weak
coupling limit while the MFSBA is used at T < TK. When
the coupling energy � of MBS exceeds the temperature, the
conductance has a two peak structure. Under a constant
magnetic field, Zeeman splitting occurs on the dot and
reduces the heights of the peaks. The magnetic field may
result in a more complicated peak structure of the non-
linear conductance. Our analysis shows that in an attempt
to probe the features of Majorana fermion physics, the role
of the Kondo effect is decisive. It is manifested by the
occurrence of a strong temperature dependence of the zero
bias conductance and exposes distinct behavior of the
nonlinear conductance as compared with that of the sim-
pler NM-MBS tunnel junction.
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FIG. 5 (color online). The zero biased conductance as a func-
tion of temperature at zero magnetic field in the strong coupling
limit (T < TK). The dashed curve corresponds to � ¼ 0:5TK and
the solid line to � ¼ 0:1TK.
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