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2Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA

(Received 30 May 2011; published 17 October 2011)

We investigate the dynamical charge response of the Anderson model viewed as a quantum RC circuit.

Applying a low-energy effective Fermi liquid theory, a generalized Korringa-Shiba formula is derived at

zero temperature, and the charge relaxation resistance is expressed solely in terms of static susceptibilities

which are accessible by Bethe ansatz. We identify a giant charge relaxation resistance at intermediate

magnetic fields related to the destruction of the Kondo singlet. The scaling properties of this peak

are computed analytically in the Kondo regime. We also show that the resistance peak fades away at the

particle-hole symmetric point.
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In recent years, experimental effort has been devoted to
manipulate and measure electrons in nanoconductors
in real time [1]. At frequencies in the GHz range and
cryogenic temperatures, current and noise measurements
provide information on the quantum dynamics of charge
carriers. Experiments have followed essentially two direc-
tions, by either using on-chip quantum detectors [2] or by
directly measuring the current using low noise amplifiers
[3]. In an original experiment, Gabelli et al. [4] have real-
ized the quantum equivalent of an RC circuit with a quan-
tum dot connected to a spin-polarized single-lead reservoir
and capacitively coupled to a metallic top gate, this setup
being later used as a single-electron source [5]. By applying
an ac modulation to the gate voltage, they measured the
admittance of the dot at low frequency. A comparison with
the classical RC circuit allows us to extract a capacitance
and a charge relaxation resistance. Their measurements
have confirmed the prediction [6,7] of a quantized charge
relaxation resistance Rq ¼ h=2e2 where e is the electron

charge and h the Planck constant. This prediction was
recently shown [8,9] to be valid for all interaction strength.
Reference [8] also predicted the emergence of an additional
universal resistance Rq ¼ h=e2 in the case of a large dot.

The quantum RC circuit is described by the Anderson
model [10] when the level spacing is sufficiently large and
electron transport is not spin polarized in contrast to
Refs. [6–9]. In that case, the gate voltage controls the
dot single-particle energy "dð<0Þ. In addition to being
experimentally relevant, for the transport through short
nanotubes [11], small quantum dots or even molecules
[12], the Anderson model is fascinating because it displays
features of strong correlation with the emergence of Kondo
physics at low energy. The question of how these corre-
lations affect the quantization of the charge relaxation
resistance is a fundamental issue.

The linear charge response of the quantum dot to a gate
voltage oscillation defines the capacitance C0 and the
resistance Rq via the low frequency expansion [8]

e2hn̂ð!Þi
�"dð!Þ ¼ C0 þ i!C2

0Rq þOð!2Þ (1)

where n̂ is the number of electrons on the dot. The capaci-
tance is thus the static response of the dot. The product
!C2

0Rq describes relaxation towards the changing ground

state that implies energy dissipation [8,13]. In this Letter,
we investigate the dynamical charge response of the
Anderson model at zero temperature and finite magnetic
fields and we evidence a giant charge relaxation resistance
phenomenon associated with the destruction of the Kondo
effect at intermediate fields.
More precisely, by applying a low-energy effective

Fermi liquid theory [14,15], we derive a generalized
Korringa-Shiba formula [16] for the charge susceptibility
that extends to finite magnetic fields. The charge relaxation
resistance then depends only on static susceptibilities that
are computed analytically resorting to the Bethe ansatz
solution [10,17,18] in the Kondo regime. At zero magnetic
field, the original Korringa-Shiba [16] formula predicts the
quantized value Rq ¼ h=4e2 independent of interactions.

This result agrees with the noninteracting scattering ap-
proach with two (spin) conducting channels [6,7]. At large
magnetic fields, the dot becomes spin polarized, reducing
electron transfer in both spin channels, and the quantized
value Rq ¼ h=4e2 is recovered perturbatively. In the cross-

over regime between these two limits, a peak was observed
in the numerical renormalization group (NRG) calcula-
tions of Ref. [19], where it is attributed to spin fluctuations
in the dot. Hereafter, we derive analytically the emergence
of this peak in the Kondo regime and derive its scaling
properties. In particular, the peak is found to disappear
completely at the particle-hole symmetric point.
The origin of the peak in the resistance is related to the

destruction of the Kondo singlet by the magnetic field
which gives more flexibility to the spin configuration,
while the charge remains frozen by interactions. As a
result, a change in the gate voltage significantly modifies
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the magnetization, with an increase of dissipation by
particle-hole excitations. The charge, however, is relatively
insensitive to the gate voltage and the capacitance remains
small. An increasing dissipation / C2

0Rq with an almost

constant capacitance C0 thus leads to an increasing charge
relaxation resistance Rq. A further increase of the magnetic

field eventually polarizes the spin on the dot, reduces spin
flexibility and thereby energy dissipation. Hence, the
charge relaxation resistance Rq passes through a maximum

when the Zeeman energy is comparable to the Kondo
energy.

The Hamiltonian of the Anderson model is given by

H ¼ X
�;k

"k�c
y
k�ck� þX

�

"d�n̂� þUn̂"n̂#

þ t
X
k;�

ðcyk�d� þ dy�ck�Þ; (2)

with n̂� ¼ dy�d� the number of spin� electrons on the dot,
n̂ ¼ n̂" þ n̂#, the linear spectrum "k� ¼ "k � g��BB=2 of
conduction electrons characterized by the constant density
of states �0, and the energy levels "d� ¼ "d � g��BB=2
of the dot. �B is the Bohr magneton, g the Lande factor, B
the external magnetic field and � ¼ � refers to " , # states,
respectively. The two terms in the second line of Eq. (2)
describe, respectively, Coulomb interaction and tunneling
from the dot to the lead with the hybridization constant
� ¼ ��0t

2. In the presence of an ac drive of very small
amplitude, "d ¼ "0d þ "! cos!t with "! ! 0, the system

relaxes towards the evolving ground state of the
Hamiltonian and the dissipated power

P ¼ 1

2
"2!! Im�cð!Þ; (3)

which is given by linear response theory, is proportional to
the imaginary part of the dynamical charge susceptibility
�cðt� t0Þ ¼ i�ðt� t0Þh½n̂ðtÞ; n̂ðt0Þ�i.

NRG calculations [15] and RG arguments [20] have
shown that the low-energy properties of the Anderson
model (2) are always those of a Fermi liquid. The effective
Fermi liquid Hamiltonian takes the form

H ¼ X
�;k

"k�a
y
k�ak� þ X

k;k0;�
K�ð"dÞayk�ak0�: (4)

The free quasiparticles of the first term are related to the
original fermions ck� by a phase shift of �=2. The second
term is a marginal perturbation corresponding to a
potential scattering at the impurity site. It defines a line
of fixed points parametrized by "d connecting the Kondo
regime (for "d ’ �U=2) to the mixed valence regimes (for
"d ’ 0 or "d ’ �U). The potential is related to the mean
occupation of the dot via the Friedel sum rule hn̂�i ¼
1=2� 1

� arctan½��0K�ð"dÞ�. Note that the potentials

K�ð"dÞ also formally depend on U, � and B. Again we
study the response to the ac drive "d ¼ "0d þ "! cos!t

with "!;! ! 0. Expanding the potentials as K�ð"dÞ ¼
K0

� þ K0
�ð"0dÞ"! cos!t, we change the basis to the one-

particle states [15] that diagonalize the potential scattering
terms K0

� ¼ K�ð"0dÞ. The remaining scattering term in the

Hamiltonian is given by

"! cos!t
X
�

K0
�ð"0dÞ

1þ ð��0K
0
�Þ2

X
k;k0

~ayk�~ak0�; (5)

with the new quasiparticles ~ak0�. The derivative of the
occupation numbers with respect to "d in the Friedel sum
rule formula above introduces the static spin-dependent
susceptibilities �c� ¼ �@hn̂�i=@"d. Once inserted into
Eq. (5), we obtain

H ¼ X
�;k

"k�~a
y
k�~ak� þ "! cos!t

X
�

�c�

�0

X
k;k0

~ayk�~ak0�: (6)

In the static case ! ¼ 0, the second term in Eq. (6) adds
the phase shift �� ¼ ���0"!�c�=�0. The Friedel sum
rule translates it into a shift in the occupations �hn̂�i¼
��c�"! in agreement with the definition of the charge
susceptibilities. The Hamiltonian in Eq. (6) is extremely
general and it only assumes a low-energy Fermi liquid
fixed point. A similar model can be found in Ref. [21]
where the spin susceptibility is discussed.
Interestingly, the low-energy model Eq. (6) provides an

alternative to compute the dissipated power Eq. (3).
Following standard linear response theory, it involves the

operators Â� ¼ ð�c�=�0Þ
P

k;k0 ~a
y
k�~ak0�, coupled to the ac

excitation in Eq. (6), namely

P ¼ 1

2
"2!!

X
�

Im�Â�ð!Þ; (7)

with �Â�ðt� t0Þ ¼ i�ðt� t0Þh½Â�ðtÞ; Â�ðt0Þ�i. The opera-

tors Â� create particle-hole pairs that are responsible for
energy dissipation. The calculation is straightforward and
gives, at zero temperature, Im�Â�ð!Þ ¼ ��2

c�!, i.e., pro-

portional to the density of available particle-hole pairs with
energy !. An identification of Eqs. (3) and (7) finally
results in our generalized Korringa-Shiba formula

Im�cð!Þ ¼ �!ð�2
c" þ �2

c#Þ; (8)

obtained to lowest order [22] in !. The physical meaning
of this expression is explicit. In the presence of the ac
driving applied to the gate voltage, relaxation is necessary
to adjust the occupation numbers to the instant ground state
of the Hamiltonian. This relaxation is realized by particle-
hole excitations, in each spin sector independently, with
amplitudes [see Eq. (6)] that are determined by the static
charge susceptibilities �c� controlling the variations of the
spin populations with the gate voltage. Equation (8) simply
states that the energy dissipated in the relaxation mecha-
nism increases quadratically with these amplitudes as a
result of the Fermi golden rule.
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At a general level, the low frequency properties of the
quantum RC circuit characterized by Eq. (1) derive from
the knowledge of the dynamical charge susceptibility since
hn̂ð!Þi ¼ ��cð!Þ"dð!Þ in the linear regime. The capaci-
tance C0 ¼ e2�c is solely determined by the static charge
susceptibility �c ¼ �cð! ! 0Þ ¼ �c" þ �c# that is calcu-
lated using Bethe ansatz. Hence, measuring the capaci-
tance realizes a charge spectroscopy [24]. At zero magnetic
field and large enough interaction, U > �, �c develops a
double-peak structure as a function of "d: maximum in the
valence regimes with a valley in the intermediate Kondo
regime around "d ¼ �U=2 where �c ¼ 8�=�U2 for
U � �. This strong reduction of capacitance, or charge
sensitivity, characterizes the Kondo limit where the charge
is frozen. It contradicts the noninteracting scattering theory
[4,6] where the capacitance is proportional to the density of
state and would therefore reveal the Kondo resonance [19].
The two approaches are nonetheless reconciled by noting
that, the Kondo resonance is mostly exhausted by spin
fluctuations, and the density of states of charge excitations
of the Anderson model, the holons, reproduces [25] the
exact value of the charge susceptibility and thus of the
capacitance.

The Korringa-Shiba Eq. (8) substituted in the expansion
Eq. (1) expresses the resistance Rq in terms of static

susceptibilities, computable by Bethe ansatz. At zero
magnetic field, �c" ¼ �c# ¼ �c=2, Eq. (8) reproduces the
standard Korringa-Shiba relation and the charge relaxation
resistance is found to be quantized and universal,

Rq ¼ h

4e2
; (9)

in agreement with the scattering approach involving
two equivalent spin channels [6,7]. In the general case,
we introduce the charge magnetosusceptibility �m ¼
�c" � �c# which measures the sensitivity of the magneti-

zation to a change in the gate voltage. The resistance reads

Rq ¼ h

4e2
�2
c þ �2

m

�2
c

: (10)

For "d ¼ �U=2, particle-hole symmetry implies that the
magnetization is extremal with respect to the gate voltage
and �m identically vanishes. Equation (9) is thus obtained
for all ratios of U=�.

In the rest of this Letter, we focus on the Kondo regime
U � � where the gate voltage explores the valley between
the Coulomb peaks located around "d ’ 0 and "d ’ �U.
Far enough from these Coulomb peaks, j"dj=�� lnðU=�Þ,
the charge on the dot remains of order one and the renor-
malization [20] of the peak positions is negligible. The
charge susceptibility is computed perturbatively at zero
magnetic field,

�c ¼ �

�

�
1

ð"d þUÞ2 þ
1

"2d

�
; (11)

and remains constant as the magnetic field is increased

with g�BB � ffiffiffiffiffiffiffiffiffiffiffiffij"dj�
p

.

Formoderatemagnetic fieldsg�BB � ffiffiffiffiffiffiffiffiffiffiffiffij"dj�
p

, themag-
netization of the dot is known [10,17] from the Bethe ansatz
solution of the Anderson model. In the Kondo limit, it
exhibits the scaling form,

m ¼ hn̂"i � hn̂#i
2

¼ f

�
g�BB

kBTK

�
; (12)

where TK ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U�=�e

p
exp½�"dð"d þUÞ=2U�� is the

Kondo temperature and the scaling function fðxÞ connects
the asymptotes fðxÞ ¼ x=

ffiffiffiffiffiffiffiffiffi
2�e

p
for x � 1, and fðxÞ ¼

1=2� 1=ð4 lnxÞ for x � 1, i.e., for low and large magnetic
fields, e referring to Euler’s number. The dependence of the
magnetization Eq. (12) on the gate voltage, or "d, is via the
Kondo temperature. Computing the derivative of the Kondo
temperature with respect to "d, then one finds

�m ¼ �

�

2"d þU

U
�

�
g�BB

kBTK

�
: (13)

The charge magnetosusceptibility �m is an odd function of
"d þU=2 that vanishes at the particle-hole symmetric
point. The scaling function �ðxÞ ¼ xf0ðxÞ is represented
in Fig. 1(a), in good agreement with Ref. [19]. It exhibits a
peak at x0 ¼ 1:0697 with �ðx0Þ ¼ 0:1257. Inserting the
results of Eqs. (11) and (13) into Eq. (10), the scaling
form of the charge relaxation resistance is obtained,

FIG. 1 (color online). (a) Scaling function �ðxÞ (solid line)
and (b) envelope function FðyÞ (see main text). Fð0Þ ¼ 0 at the
particle-hole symmetric point y ¼ 0 where @TK=@"d ¼ 0.
y ¼ �1 correspond to the two Coulomb peaks in the transport
or valence regime. Green circles ("d ¼ �0:15) and blue crosses
("d ¼ �0:1) are extracted from Fig. 3a of Ref. [19], with
U ¼ 0:4 and � ¼ 0:02, by implementing Eq. (14) and rescaling
the x axis. (c) Charge relaxation resistance for "d=U ¼ �1=2�
0:1967 and various ratios of U=� ¼ 15, 10, 7.
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Rq ¼ h

4e2

�
1þ

�
U

�

�
4
FðyÞð�ðxÞÞ2

�
; (14)

with y ¼ ð2"d þUÞ=U, x ¼ g�BB=kBTK. The peak in the
resistance as a function of the magnetic field is described
by the scaling function �ðxÞ. It is also weighted by the
envelope FðyÞ ¼ ð�2=8Þ2y2ðy2 � 1Þ4=ð1þ y2Þ2, shown
Fig. 1(b). The agreement with Ref. [19], where U=� ¼ 20
is finite, is here only approximate. The global maximum in
the resistance is thus obtained for "d=U ¼ �1=2� 0:1967,
g�BB ¼ 1:0697kBTK, with Rq ¼ 0:001 42ðh=4e2ÞðU=�Þ4
which predicts a strong increase of the resistance maximum
with the ratio U=�, as seen Fig. 1(c).

For large magnetic fields g�BB � ffiffiffiffiffiffiffiffiffiffiffiffij"dj�
p

, the free
orbital regime [20] is reached and straightforward pertur-
bation theory applies. The result is

hn̂"i ¼ 1� 1

�

�

"M � "d
; hn̂#i ¼ 1

�

�

"M þ "d þU
;

with "M ¼ g�BB=2. This leads to �m ¼ 0 for "d ¼ �U=2
as expected and, for very large magnetic fields g�BB �
ðj"dj; "d þUÞ, the quantized value Eq. (9) is recovered
for all gate voltages. Note that the standard result [6–9]
Rq ¼ h=2e2 is only recovered for a fully polarized Fermi

sea in the lead.
To summarize, the peak in the charge relaxation resist-

ance is due to the enhancement of �m while the total charge
remains quenched and �c small. In the presence of a finite
magnetic field, the Kondo state is a mixture of singlet and
triplet spin configurations controlled by the ratio of the
Zeeman energy to the Kondo energy. A change in the gate
voltage modifies this ratio and, while keeping the total
charge of the dot almost constant, redistributes the spin
up and down occupations. This leads to a larger number of
particle-hole excitations for each spin species and therefore
increases dissipation. At the particle-hole symmetric point,
the Kondo energy is stationary with respect to the gate
voltage such that no spin redistribution occurs and the peak
in the resistance is absent. It is worth mentioning that the
predicted peak in the charge relaxation resistance occur-
ring at intermediate magnetic fields can be observed using
current technology [4]. This work can be extended in
various directions, by considering either Zeeman effects
on a large cavity characterized by several energy levels
[26] or a large number of channels [27]. We finally stress
that our result (10) for the resistance is valid not only in the
Kondo regime but for all values of U, "d and B.
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Etienne, Y. Jin, and D. C. Glattli, Science 313, 499 (2006).
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