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k-core percolation is an extension of the concept of classical percolation and is particularly relevant to

understanding the resilience of complex networks under random damage. A new analytical formalism has

been recently proposed to deal with heterogeneous k-cores, where each vertex is assigned a local threshold

ki. In this Letter we identify a binary mixture of heterogeneous k-cores which exhibits a tricritical point.

We investigate the new scaling scenario and calculate the relevant critical exponents, by analytical and

computational methods, for Erdős-Rényi networks and 2D square lattices.
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Tricritical points (TCPs) are interesting critical phe-
nomena in statistical physics, constituting a natural switch
between first and second order phase transitions. In other
words, a TCP affords the possibility to smoothly control
the order of the phase transition by tuning the appropriate
parameter. In the language of critical phenomena, this is
equivalent to identifying the position of a phase transition
from the extrapolation of the order parameter—while usu-
ally impossible in first order transitions, it can be done in
the case of continuous ones [1]. In the case of percolation
models, there has recently been an attempt to identify a
TCP in a model mixing elements of classical and explosive
percolation in a lattice [2], although there is now evidence
that the explosive percolation transition is continuous [3].
Other recent models which allow control of the order of the
transition include explosive percolation on scale free net-
works [4], and dependency groups on interdependent net-
works [5]. In this Letter we establish the presence of a TCP
in a simple extension of classical percolation, namely,
heterogeneous k-core (HKC) percolation, which has the
advantage of a sound analytical approach on random and
complex networks [6,7]. We show analytical evidence of a
TCP in Erdős-Rényi graphs and numerically we find simi-
lar phase diagram topology in the square lattice. Finally,
our model appears to be in the same universality class of a
model which reproduces nontrivial signatures of liquid-
glass transitions, including the higher-order glass singular-
ity predicted by mode-coupling theory [8].

A k-core is defined as the maximal network subset
which survives after a culling process which recursively
removes all the vertices (and adjacent edges) with less than
k neighbors. As a generalization of the concept of the giant
component, the k-core gives a deeper insight into the
structure and organization of complex networks. It has
been thoroughly investigated on Bethe lattices [9], random
graphs [6,10] and, using a numerical approach, on various
types of lattices [11]. The k-core percolation analysis has
found several applications in varied areas of science in-
cluding protein interaction networks [12], jamming [13],

neural networks [14], granular gases [15], and evolution
[16]. Important insights into the resilience of networks
under damage [17] and spreading of influence in social
networks [18] are gleaned from an understanding of the
k-core structure of the network. As in Refs. [6,19], we can
study k-core percolation on networks after randomly re-
moving a fraction 1� p of vertices. We use the treelike
properties of the configuration model [20], in which the
number of loops vanishes as N ! 1, which guarantees
that if a k-core exists, it must be infinite, at least if k � 2
[6,9]. In the HKC extension [7] each vertex has its own
threshold and the culling process is based on local, vertex-
dependent rules. Although Baxter et al. developed results
for an arbitrary distribution of vertex thresholds, they study
binary mixtures of vertices of types a and b, with thresh-
olds ka ¼ 1, kb � 3. The first heterogeneous models of this
kind were investigated by Branco [21] on a Bethe lattice,
whereas the related problem of bootstrap percolation (BP)
has been much studied on regular lattices [11,22]. Here we
focus on the case k � ðka; kbÞ ¼ ð2; 3Þ.
We start with a binary mixture (ka, kb), where vertices

have been randomly assigned two thresholds ka and kb (say
ka < kb) with probability r and 1� r, respectively. Finite
clusters are a possibility when ka ¼ 1 and so we must
make a distinction between Mab, the probability that a
randomly chosen vertex belongs to the HKC, and Sab,
the probability that a randomly chosen vertex belongs to
the giant component of the HKC. We will show that in the
case k ¼ ð2; 3Þ these two quantities are coincident, but
there are relevant examples where they are not [7].
In the original k-core formalism, given the end of an

edge, a (k� 1)-ary subtree is defined as the tree where, as
we traverse it, each vertex has at least k� 1 outgoing
edges, apart from the one we came in. Instead, considering
a HKC, every vertex i may have a different threshold ki.
The (ki � 1)-ary subtree, then, is the tree in which, as we
traverse it, each encountered vertex has at least ki � 1 child
edges. We define Z as the probability that a randomly
chosen vertex is the root of a (ki � 1)-ary subtree. Taking
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advantage of the local treelike nature of the configuration
model, Z is related to Mab as [7]:

MabðpÞ ¼ �MaðpÞ þ �MbðpÞ ¼ pr
X1

q¼ka

PðqÞ�ka
q ðZ; ZÞ

þ pð1� rÞ X1

q¼kb

PðqÞ�kb
q ðZ; ZÞ; (1)

where �MaðbÞðpÞ is the fraction of nodes of type aðbÞ in the

HKC, respectively, PðqÞ is the degree distribution, and we
have used the convenient auxiliary function

�k
qðX; ZÞ ¼

Xq

l¼k

q
l

� �
ð1� ZÞq�l

Xl

m¼1

l
m

� �
XmðZ� XÞl�m:

The quantity �
kaðbÞ
q ðZ; ZÞ in (1) represents the probability

that a vertex of type aðbÞ of degree q has at least kaðkbÞ
edges which are roots of a (ki � 1)-ary subtree. This quan-
tity is summed over all possible degrees, taking account of
the relevant vertex type fraction. The self-consistent equa-
tion for Z is

Z ¼ pr
X1

q¼ka

qPðqÞ
hqi �ka�1

q�1 ðZ; ZÞ

þ pð1� rÞ X1

q¼kb

qPðqÞ
hqi �kb�1

q�1 ðZ; ZÞ: (2)

We now consider the probability X, that a randomly chosen
edge leads to a vertex which is the root of an infinite
(ki � 1)-ary subtree. In the case of a binary mixture, X is
written as [7]

X ¼ pr
X1

q¼ka

qPðqÞ
hqi �ka�1

q�1 ðX; ZÞ

þ pð1� rÞ X1

q¼kb

qPðqÞ
hqi �kb�1

q�1 ðX; ZÞ: (3)

The fraction of vertices in the giant HKC Sab, then, is

given by SabðpÞ ¼ �SaðpÞ þ �SbðpÞ, where the fraction of

nodes of type a is �SaðpÞ ¼ pr
P1

q¼ka
PðqÞ�ka

q ðX; ZÞ and an
analogous expression holds for �SbðpÞ.

For ka ¼ 1, kb � 3 mixtures on the Bethe lattice, the
phase diagram shows a critical line which meets a first
order line at a critical end point and a critical point at the
end of a two-phase coexistence between a low and a high
density phase [7]. The two lines do not match at a TCP,
because the 1-nodes are so robust that a 1-rich phase is
stable to damage at intermediate compositions even when
the kb-rich phase has collapsed. Let us consider now the
case k ¼ ð2; 3Þ, with a degree distribution such thatP

qq
2PðqÞ<1. We can rewrite Z [Eq. (2)] as pfðZÞ ¼ 1

where

fðZÞ¼ r
2Pð2Þ
hqi þX

q�3

qPðqÞ
hqi

�
�
1�ð1�ZÞq�1

Z
�ð1�rÞðq�1Þð1�ZÞq�2

�
(4)

and similarly rewriting Eq. (3) as hðX; ZÞ ¼ 1=p with

hðX;ZÞ ¼ r
2Pð2Þ
hqi þ X

q�3

qPðqÞ
hqi

�
�
1�ð1�XÞq�1

X
�ð1� rÞðq� 1Þð1�ZÞq�2

�
:

(5)

These two equations differ only in the first (fractionary)
part of the sum. The X-dependent (positive) general term
of the series is monotonically decreasing for any 0<X�1,
meaning that Eq. (3) has only one nonzero solution when
Eq. (2) has a nonzero solution and therefore X ¼ Z for the
k ¼ ð2; 3Þ mixture (and S23 ¼ M23). We expect this prop-
erty to be true for any mixture with nodes of type k � 2.
We now explicitly show that the k ¼ ð2; 3Þ mixture

presents a TCP for an Erdős-Rényi (ER) degree dis
tribution with mean degree z1 PðqÞ ¼ zq1 expð�z1Þ=q!.
Using the condition X ¼ Z, the equation pfðZÞ ¼ 1
fully solves the problem of finding the onset of the
giant HKC, and the function fðZÞ becomes fðZÞ ¼
f1� e�z1Z½1þ ð1� rÞz1Z�g=Z. It is now clear that
f0ðZÞ< 0 for every r > 1

2 , implying that the only solution

is the trivial one Z ¼ 0, with a depercolating second order
phase transition occurring at the critical occupancy proba-
bility pc ¼ 1=rz1. For r < 1

2 , fðZÞ has a maximum at

0<ZM < 1. This implies the presence of a first order
transition and a coexistence between a HKC phase of
strength M23ðZMÞ, given by (1), and the nonpercolating
phase at Z ¼ 0. The expansion of fðZÞ for r � 1

2 ,

ZðpÞ ! 0, as p ! pþ
c , yields fðZÞ¼ rz1þð1=2�rÞz21Zþ

OðZ2Þ showing that the maximum of fðZÞ continuously
matches the Z ¼ 0 line exactly at rt ¼ 1

2 , where a TCP

is present. We show the computed phase diagram of the
k ¼ ð2; 3Þ mixture in Fig. 1.
We now calculate the critical exponents for this mixture,

in particular, at the TCP at rt ¼ 1
2 , pt ¼ 2

z1
. The expansion

of the order parameter M23ðpÞ for p ! pþ
c at r � 1

2 and

p ! p�þ (the border of the coexistence region) at r < 1
2

yields three different values for the exponent �:

� ¼
8
><
>:

2 1
2 < r � 1

1 r ¼ 1
2

1
2 0 � r < 1

2 :
(6)

The exponent� takes a unique value at the TCP, and agrees
with the values found by Branco on the Bethe lattice [21].
However, in this work the presence of finite-size cores had
not been properly handled and it was erroneously
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assumed that the phase diagrams of the k ¼ ð1; 3Þ and the
k ¼ ð2; 3Þ mixture had the same topology. The exponent
� ¼ 1=2 for r < 1=2 corresponds to the usual hybrid phase
transition seen in k-core percolation, a discontinuous tran-
sition which combines with critical fluctuations (only on
the percolating side) as usually found in second order
transitions. To our knowledge, the k ¼ ð2; 3Þ mixture is
the first model displaying a TCP adjacent to a hybrid phase
transition.

It has been shown that subsets of the HKC called corona
clusters have the same critical properties of the HKC
[13,19]. The corona vertices have exactly ki neighbors in
the HKC, and form finite clusters whose mean size di-
verges when approaching the threshold from above. The
corona clusters provide a more convenient order parameter

for numerical study of the model on random networks, in
contrast to the HKC where only one (infinite) cluster
survives. Using the configuration model with ER degree
distribution we simulated the k ¼ ð2; 3Þ mixture for vari-
ous sizes. The typical ansatz of finite-size scaling for
a continuous transition is that any quantity Y scaling as

Y � ðp� pcÞ�� should have the form Y ¼ N�=�F½ðp�
pcÞN1=��, where � is the correlation length exponent and F
is some scaling function. Given the universal nature of F

we expect to see data collapse in a plot of YN��=� against

ðp� pcÞN1=�. Computing the mass of the heterogeneous
corona C23ðkÞ at the TCP for various sizes we find
�=� ¼ 0:34ð5Þ (Fig. 2). Similarly for the mean corona
cluster size �23, we find �=� ¼ 0:39ð4Þ. We determine
the exponent � ¼ 2:86ð9Þ by the scaling of the effective

percolation threshold with size pave � pc � N�1=�, where
we have located pave from the peak of the susceptibility of

the corona mass �C23 ¼ ðhC23i2 � hC23i2Þ1=2. We find
good data collapse with these exponents in the scaling
window at the TCP (Fig. 2), and fit the exponents
� ¼ 0:9ð90Þ and � ¼ 1:13ð1Þ, the former being close to
the value calculated analytically. The behavior of the
strength of the HKC along the edges of the coexistence
region near the TCP for r ! 1

2
þ allows us to calculate

analytically the subsidiary tricritical exponent �u defined
byM�ðrÞ � ð12 � rÞ�u [23]. For k ¼ ð2; 3Þ we find �u ¼ 2.

The tricritical crossover exponent ’t describes the
change of the critical line as the TCP is approached [24].
Thus, we write the critical line in terms of two scaling
fields �? and �k, perpendicular and tangent to the critical

line, respectively. Given the simplicity of the model, this
calculation can also be done analytically for ER networks.
The rotation defining the critical fields is

�?
�k

� �
¼ cos# sin#

� sin# cos#

� �
p� pt

r� rt

� �
; (7)

FIG. 2 (color online). Rescaling of the corona mass C23 and the mean corona cluster size �23 at the TCP on ER networks. The data
range in size from N ¼ 29 to N ¼ 218 via successive doublings. We find the exponent ratios �=� ¼ 0:34ð5Þ and �=� ¼ 0:39ð4Þ from
the scaling of C23 and�23 at pt (insets) and show the data collapse achieved with those exponents (main panels N ¼ 214 . . . 218;x, 	,
w, 
, h, respectively).

FIG. 1 (color online). Phase diagram of the k ¼ ð2; 3Þmixture,
showing the total mass of the percolating HKC cluster at differ-
ent compositions r, for ER networks with z1 ¼ 10. The TCP at
r ¼ 1=2 separates a line of first order transitions (dashed) from
the second order line (solid). The masses of the 2-rich core and
the 3-rich core in the giant HKC are also shown (dotted and
dash-dotted lines in the shaded area, respectively). The inset
shows the phase diagram in the (r, p) space.
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with tan# ¼ 4=z1. Close to the TCP, the critical line has a

behavior �k ��1=2
? , with a crossover exponent ’t ¼ 2

(Fig. 1). We expect that the above critical behavior (as
well as the values of the critical exponents) is reproduced
by all degree distributions with finite second moment.

We simulated the k ¼ ð2; 3Þ model on a 2D square
lattice and located the TCP at small concentrations of
k ¼ 2 vertex types (Fig. 3). On the lattice, the analogous
bootstrap percolation (BP) model has been much studied
and it is known [25] that for k � dþ 1 a discontinuous
transition occurs only at p ¼ 1. For k � d the transition is
continuous, although the critical exponents have values
which in general depend on k. On the continuous side of
the TCP we can expect the usual scaling of the threshold

density pave � pc � L�1=�, whereas for r ¼ 0 we might
expect the scaling form found in BP pave � pc � 1= logL
[26], although numerical simulations have struggled to
confirm this scaling in several cases [11]. As shown in
Fig. 3 the TCP moves toward r ¼ 0 with increasing size
(determination of the precise scaling with L requires far
larger sizes and is the subject of further work). In fact, there
is a finite window of r over which the transition slowly
changes from first to second order, and this window be-
comes sharper with increasing system size. We quantify
this with the Binder cumulant U4ðpcÞ ¼ 1� hMi4=3hM2i2
which has the value U4 ¼ 2

3 on the first order side and 0

on the second order side (inset of Fig. 3). Data collapse
near the TCP does not work due to the presence of different
scaling regimes. We determined the critical exponents
at the TCP for the largest size simulated (L ¼ 1024)
and found the exponents � ¼ 0:31ð5Þ, � ¼ 2:51ð3Þ, and
� ¼ 1:39ð9Þ. Exponents � and � at the TCP are very close
to their values for ordinary percolation on a 2D lattice

(and a little smaller than the ones of explosive percolation
[2]). Exponent �, instead, is significantly larger. The
fractal dimension of the tricritical HKC clusters is
D ¼ 2� �=� ¼ 1:77ð8Þ, somewhat smaller than ordinary
percolation (D ¼ 1:879), reflecting the presence of large,
jagged voids in the k ¼ ð2; 3Þ mixture at the TCP. The
unusual finite-size effects in this model are reflected in a
violation of the hyperscaling relation.
In contrast with the k ¼ ð2; 3Þ case, the phase diagrams

for ka ¼ 1, kb � 3 mixtures [7] do not present a TCP.
Moreover, the analytical properties of fðZÞ and hðX; ZÞ
indicate that TCPs are also absent in mixtures of type
ka ¼ 2, kb > 3. Though far from ubiquitous, a TCP is
indeed present in the k ¼ ð2; 3Þ mixture, not only on the
Bethe lattice but also in ER graphs and regular square
lattices. This case appears to be peculiar because the
resiliences of the 3-rich-phase and the 2-rich-phase are
sufficiently close that the two phases collapse at the same
damage fraction, leading to a complete failure of the HKC,
either through a first or a second order transition. This
phenomenon may occur in cases when a mixing of a
continuously and a discontinuously failing phase is not
too heterogeneous (kb ¼ ka þ 1). It is intriguing to note
that the case k ¼ ð2; 3Þ almost exactly maps onto a model
of glasses, recently studied on the Bethe lattice [8], which
appears to be in the same universality class.
In conclusion, we have presented a new model of HKC

percolation which supports a smooth interpolation between
classical percolation and a first order phase transition
through a TCP. We are able to identify a new tricritical
scaling scenario and calculate, both by analytical and
numerical methods, critical exponents which are different
from the ones of known percolation transitions. We prove
the presence of this critical phenomenon in ER graphs, and
we also get strong numerical evidence in the square lattice.
The capacity to govern the order of phase transitions in
randomly damaged networks may constitute a step towards
a more effective infrastructure for network protection.
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