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We analyze the acoustic collective excitations in two- and three-dimensional binary Yukawa systems,
consisting of two components with different masses. A theoretical analysis reveals a profound difference
between the weakly and strongly correlated limits: at weak coupling the two components interact via the
mean field only and the oscillation frequency is governed by the light component. In the strongly
correlated limit the mode frequency is governed by the combined mass, where the heavy component
dominates. Computer simulations in the full coupling range extend and confirm the theoretical results.
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Recently there has been a great interest in the collective
excitations of Yukawa liquids and solids created by the
emergence of the new field of complex (dusty) plasmas [1].
Complex plasmas consist of highly charged mesoscopic
grains immersed in the background of electrons and ions. It
is the presence of the latter that, by screening the bare
Coulomb interaction between the grains, generates an ef-
fective interaction that, in a good approximation, can be
represented by the Debye-Hiickel or Yukawa potential
¢(r) = Zeexp(—kr)/r (k is the screening parameter).
The strength of the coupling governing the behavior of
the systems is conventionally characterized by the nominal
coupling constant I' = Z?¢?/akT (a is the Wigner-Seitz
radius and T is the temperature). Because of the screening
(k > 0) the effective coupling constant I'* (defined in
[2,3]) may be substantially smaller. The high value of the
grain charge (Z>> 1) ensures that the system is in
the strong coupling (I'" > 1) regime and consequently in
the liquid or solid phase. Both two-dimensional (2D) and
three-dimensional (3D) Yukawa systems (YS) are of inter-
est, although most of the experimental work has focused so
far on 2D systems.

Over the years the collective excitations in YSs have
been studied theoretically, experimentally, and by com-
puter simulations. The treatment of the crystalline solid
phase is feasible via the harmonic phonon model. More
challenging is the appropriate description of the liquid
phase: here various schemes have been attempted [4,5],
out of which the quasilocalized charge approximation
(QLCA) [6] has emerged with considerable success. All
these efforts have by now congealed in a reasonably com-
plete understanding of the collective mode spectra of liquid
and solid YSs, both in 2D and 3D. In addition, the YS has
turned out to be a useful paradigm for other strongly
coupled many body systems [7,8].

The restriction in almost all of the foregoing investiga-
tions on collective excitations is that they address one-
component YSs (OCYS), where all the particles carry the
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same charge number Z and the same mass m. Only a few
exceptions are available, most notably the recent experi-
mental realization of a two-component (binary) bilayer [9].
Thus, the collective mode structure of YSs with more than
one component, that of the two-component binary YS
(BYS), in particular, is still an open question. It is also
by no means a trivial generalization of the single compo-
nent problem; binary systems are well known to exhibit a
wealth of novel physical features: a much richer phase
diagram, the degree of miscibility of different phases,
new modalities of disorder, and the excitation of optic
modes are amongst them (e.g., [10]). The connection to
problems relating to other liquid or solid condensed matter
systems are more immediate than in the single component
case: the listing above provides a compass and as systems
of expected interest binary ionic mixtures in white dwarf
and giant planet interiors, ionic crystals, liquid and solid
alloys, and semiconductor bilayers come immediately to
mind.

The asymmetry between the two components of a BYS
is characterized by three parameters: the mass ratio m,/m,
the charge ratio Z,/Z;, and the density ratio n,/n,. In a
complex plasma these parameters are not independent:
most importantly, both the m,/m; and the Z,/Z, ratios
are determined by the relative grain sizes. Theoretically,
and in simulation models, of course, these parameters can
be separated; indeed they should be so distinguished, in
order for one to be able to determine the different physical
effects brought about by mass, charge, etc., asymmetries.
We have already shown in [11] that for the purpose of
calculating the dispersion relation the charge, mass, and
density ratios can be reduced to two asymmetry parameters
p* = (Zyny)/(Zyny) and ¢* = (Zym,)/(Zym,).

This Letter addresses the issue of the collective spectrum
of a BYS. We study the excitation of the longitudinal
acoustic mode and we investigate how the asymmetry,
the mass difference, in particular, between the two species
affects the sound speed as the coupling strength I' is varied
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from the weak coupling I'* << 1 to the strong coupling
I > 1 regime.

Consider now a BYS, with masses and densities m, and
ny (A =1, 2), respectively. Each density can be associated
with a Wigner-Seitz radius a, and a nominal coupling
constant I'y = Z3e?/a,kT. The interaction potentials are
@3P(k) = 4nZie? /(K> + k*) and  @3P(k) = 27wZ3¢?/
VK> + k%. In a OCYS the longitudinal collective mode is
acoustic at a long wavelength (k — 0) and has a coupling
dependent sound velocity s [6,12]. It is the equivalent of
this mode in the BYS that we concentrate on. In the
calculations we parallel the 2D and 3D results. In the
weak coupling limit the sound velocity is determined by
the dispersion relation obtained from the random phase
approximation (RPA) or Vlasov dielectric function (see,
e.g., [13]):
ny k2

0 =4 =
Xa(k, w) ot
(1)

For our purpose it is sufficient to use the 7 =0 *“cold
fluid” result: temperature dependent terms slightly in-
crease the sound speed over this value. Equation (1) yields
the longitudinal sound velocity s:

P = wo/k and  s?P = wyva/k,
w3l = \/477ZieznA/mA, (2)
wi = VZWZ/%‘eznA/mAa.

wy =y} + w3 = 041 + p>¢® is the total plasma fre-

quency and a = \/aja,. The salient feature of the RPA
result is that through the total plasma frequency the sound
speed is governed by the reduced mass, i.e., by the light
component and, with a sizable difference between the light
and heavy masses, the presence of the heavy component
plays a negligible role.

In the strong coupling limit we calculate the dispersion
using the QLCA with the input of correlation functions
obtained from molecular dynamics (MD) simulations. The
QLCA is expected to provide a reliable description of the
strongly coupled liquid system, as it is attested by its
application both to 2D and to 3D OCYLs. (see, e.g.,
[6,14]. While we do not know how faithfully the QLCA
can describe the mode structure in binary systems, there
is little doubt that it is reliable in the long-wavelength
(k— 0) limit. This is evidenced by the demonstration
[15] that it provides a smooth transition to the angle-
averaged long-wavelength phonon dispersion of a corre-
sponding crystal lattice.

In the QLCA the central quantity is the longitudinal
dynamical matrix C4z(k) dependent on the equilibrium
pair correlation function /4 (r). We note that since masses
do not affect equilibrium quantities, with appropriate

eppa = 1 — Z§0A(k)/\/9;(k, w),
A

scaling, all the h,p-s are identical and derivable from
hy(r), the pair correlation function for the single compo-
nent system. The dispersion relation expressed in terms
CL(K) follows from

lw?8,45 — Chg(R)Il = 0. 3)

We consider first the 3D YBS. In the long-wavelength
(k — 0) limit of interest, the QLCA matrix elements are

r k2 2
Ch(k —0) = 2| (1 — UP p*l‘%W],

- k2

Chy(k — 0) = 2| pg(1 — UP) = — HW],
| K 3 (4)
r k2 q2

CL(k —0) = w? p*q*(1 — U;ZD)F + ?W]

4

2 oo 3 .
Ui% = 15 [0 d)’)’(l +ty+ Z}’z)@ Yhyp(r),

W=1+ [ dyye Y h,(r),
0
y = Kr.
Introducing the average charge and mass,

VA + Z
(zy =20 T 2ol (m)
n + ny

_mn +mony
)

n1+n2

we find that the crucial frequency parameter now is

2P _ pallt )

m g
a quantity that has been dubbed in the literature as the
frequency related to “‘the pseudoalloy atom™ (FPAA) [16],
or to the average atom in the virtual crystal approximation

[17-19]. From Egs. (3) and (4) one now readily obtains the
3D sound speed as

(&)

~3D

w
$3D —
K

1 — UP(). (6)
A similar calculation in 2D leads to

, (2)?
(m)d’

§2D — a~)2D‘/a /1 — U™(I),
K

5 [« 3 .
U%]l)? = _B’[O dy[l +y +§y2]€ »‘hAB(r).

(I)ZD

= 4|2mnge

(7

U3P and U?P in Egs. (6) and (7), respectively, are calcu-
lated from U = (Uy; + 2p*U, + p*Uy)/(1 + p?)?, us-
ing the corresponding U35 and U3} values. Note that for
q =1 we have @ = w, and one recovers a quasisingle
component behavior [11].

There are two issues to be noted here: (i) @, in contrast
to wg, is governed by the heavier component; (ii)
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the leading terms in the equations for s°° and s°° are
seemingly coupling independent, although these equations
are valid in the strong coupling limit, since the QLCA is a
strong coupling approximation. The explicit coupling de-
pendence enters through the U,5(I") terms only.

Currently, there is no theoretical understanding of the
transition bridging the weak, light species dominated, and
the strong, heavy species dominated, coupling domains. In
order to follow the collective excitations in this intermedi-
ate coupling region and to verify the predictions of the
QLCA theory, we generate 3D and 2D MD simulation data
for the longitudinal current-current dynamical structure
factors, from which we obtain the acoustic speed, over a
wide range of I" values extending well into the crystalline
solid region. The lower limit of I' is set by the limitations of
the simulation technique.

While the theoretical results are quite general, covering
the case of a binary Yukawa system for any asymmetry, the
simulations are confined to systems with m; # m, but
Z, = Z,. We study both 2D and 3D systems, both with
equal densities (n; = n,) and with unequal densities: for
the latter we have chosen n, = (1/2)n; in 2D and n, =
3n, in 3D.

At T' =T, the system is in the solid phase, in 2D the
underlying lattice structure is hexagonal; in 3D it is bcc or
fcc, depending on the value of « [20]. With mass asym-
metry only, the occupation of the lattice sites by the two
species would be random, since the potential energy is
independent of how particles are distributed, and entropy
prefers the disordered distribution. It is only when, in
addition to unequal masses (m; # m,), the charges are
also unequal (Z; # Z,), that a particular crystal structure
is generated over the lattice in order to minimize the
energy. Nevertheless, in this work, in anticipation to its
relevance to realistic systems, we have studied crystal
structures with a maximally symmetric distribution of the
two components. The corresponding symmetric crystal
structures are shown in the insets in Fig. 1. (We have
also verified by simulation that the chosen structures would
be stable configurations for the Yukawa solids, should the
m,/m; ratio be accompanied by Z,/Z; = yJm,/m, as it
happens in dusty plasmas.) The sound velocities for these
crystal structures were calculated in the harmonic phonon
approximation; these were also confirmed by MD simula-
tions (of systems with I' ~ 10%, initiated with lattice con-
figurations). These values and sound velocities obtained
from simulations for the disordered phase are virtually
indistinguishable.

Our main results for the sound speed are portrayed in
Fig. 1, where the four panels correspond to the four cases
listed above. In addition to the results of the MD simula-
tions, the QLCA prediction for the high I' liquid, and the
results pertaining to the long-wavelength phonons in the
respective crystal structures are displayed. For the weak
coupling domain we have indicated a representative value,
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FIG. 1 (color online). Longitudinal sound speed vs I
in different systems, obtained from MD simulations. 3D:
(@) ny =ny, k=1, (b) ny/n; =3, k =3. 2D: (¢) n, = ny,
k=1, (d) ny/n; = 0.5, k = 1. my/m; =5 for all cases. The
dotted lines indicate the theoretical low I'; and high I'; limits;
the continuous lines represent the results of the QLCA calcu-
lations. The panels also illustrate the respective crystal structures
in the solid phases.

the ““cold fluid” sound velocity [Eq. (1)]: the inclusion of
thermal effects would only slightly increase this value.
Figure 1 shows the rather dramatic decrease of the sound
velocity with increasing I" from the weakly coupled to the
strongly coupled regions. For high I', near I',,, the agree-
ment of the MD results with the QLCA predictions is
excellent. There is also an almost perfect agreement near
I',, between these two values pertaining to the liquid and
the crystal lattice values. The small discrepancy, visible
for the 3D n, = 3n, case can be attributed to the anisot-
ropy of the sound velocity in the fcc lattice: the liquid
results correspond to angle-averaged values, while the
lattice result is given along the chosen {001} direction.
This point is further elucidated in Fig. 2, where the depen-
dence of the sound velocities on the mass ratio is shown for
the different crystalline solid phases and is compared with
the QLCA predictions.

Our calculations show (Fig. 1) that the I dependence of
the sound speed is weak and that even at the crystallization
boundary it does not amount to more than 10% of the
leading term. In view of our earlier statement, it is now
safe to assume that the validity of the QLCA result can be
extended to the crystal lattice region. The importance of
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FIG. 2 (color online). Longitudinal sound speed vs m,/m;,
obtained from lattice calculations. The labels correspond to the
cases given in Fig. 1. The symbols represent QLCA calculation
results for the strongly coupled liquid phase.

this observation lies in the fact that the notion of FPAA has
been successfully used for the description of phonon dis-
persion for binary alloys [16,17] and disordered systems
[18,19], as a heuristic concept. Here we have provided an
analytic derivation of this behavior.

The physical effect that causes the lowering of the sound
velocity with increasing correlations may be attributed to
the binding of the lighter particles to the heavier ones,
resulting in a combined effective mass. This latter, defined
(e.g., in 2D) by

Meii  ny +ny 1 1

m n,  ka(s°/wa)?

®)

is displayed in Fig. 3, as a function of the coupling. It may
be noted that the binding seems to become quite pro-
nounced already at the relatively low I" = 5 value.

In summary, we have analyzed the behavior of the
acoustic excitation in a binary Yukawa system consisting
of two components with different masses, as a function of
the plasma coupling strength I'. Our main focus has been to
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FIG. 3 (color online). Effective mass vs I';, obtained from MD
simulations, for 2D systems at different mass ratios and den-
sities, at k = 1. The dotted lines represent extrapolation to low
I'; RPA values; (a) ny/n; = 1 and (b) ny/n; = 0.5.

see how correlations affect the way the two masses bind
into an effective mass. A theoretical analysis at the weakly
and strongly correlated limits shows that while in the
weakly correlated (I' < 1) system the effective mass forms
as the reduced mass (‘“‘parallel connection); in the
strongly correlated liquid or solid phase (I' > 1) the ef-
fective mass is the weighted average of the two masses
(“series connection’). As a result, the sound speed is
substantially diminished in the strong coupling domain,
as compared to its weak coupling value. Our MD simula-
tions of the longitudinal acoustic mode, straddling the
intermediate coupling range, have confirmed the result
and have mapped the variation of the sound speed over a
wide range of I" values, both for 3D and 2D systems.

A remarkable feature of the derivation is that the leading
term in the strong coupling expression is formally correla-
tion independent: it is a consequence of the localization of
the particles, inherent in the model. Thus, even though our
analysis pertains only to systems interacting through a
Yukawa potential, one may expect that it has a more general
validity and other binary systems with an acoustic or qua-
siacoustic type excitation (a two-dimensional Coulomb
liquid, in particular) would follow a similar pattern.

From the experimental point of view, we note that
in alloys—bearing a great deal of similarity to Yukawa
solids—the notion of the pseudoalloy atom is heuristically
well established (see, e.g., [16] and references therein). As
to complex plasmas, laboratory experiments on binary
systems could be more feasible in 3D than in 2D, where
they should require levitating grains with two different
Z/m ratios.
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