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We report on a numerical simulation of the classical evolution of the plane-wave matrix model with

semiclassical initial conditions. Some of these initial conditions thermalize and are dual to a black hole

forming from the collision of D-branes in the plane-wave geometry. In particular, we consider a large

fuzzy sphere (a D2-brane) plus a single eigenvalue (a D0 particle) going exactly through the center of the

fuzzy sphere and aimed to intersect it. Including quantum fluctuations of the off-diagonal modes in the

initial conditions, with sufficient kinetic energy the configuration collapses to a small size. We also find

evidence for fast thermalization: rapidly decaying autocorrelation functions at late times with respect to

the natural time scale of the system.
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Introduction and conclusion.—From the beginning of
the gauge-gravity correspondence [1] it was understood
that large black holes with anti–de Sitter asymptotics
should be related to thermal states in the dual field theory
[2]. So, formation of a black hole from nonthermal initial
conditions should be dual to thermalization of a specific
initial state in the dual dynamics. This idea has led to the
suggestion that the rapid thermalization observed in heavy
ion collisions [3] should be described by a dual black hole
formation event [4].

Nascent black holes settle very quickly to the no-hair
solutions, as shown by numerical simulations (see, e.g.,
[5]). We expect that the dual theory will behave similarly. It
has also been conjectured that black holes are ‘‘fast scram-
blers’’ [6]; i.e., they distribute information (or wash it
away) faster than any other physical system, logarithmi-
cally in the number of degrees of freedom. This refers to
how fast small quantum fluctuations away from equilib-
rium settle back to equilibrium in a black hole.

The purpose of this Letter is to explore such thermal-
ization processes from the point of view of the field theory
and to formulate a program where the fast scrambler con-
jecture can eventually be tested by numerical methods. We
do this by focusing on a system with finitely many degrees
of freedom where a collision of two gravitons or D-branes
at high energy can in principle be studied: the plane-wave
(or BMN) matrix model [7]. This Letter describes the first
simulations of this system we have performed and the
evidence we have acquired for fast thermalization. The
simulations solve the classical equations of motion of
the model. We show that the time averages of quantities
in the system after thermalization match the Gibbs distri-
bution for some degrees of freedom that appear quadrati-
cally in the Hamiltonian. The temperatures measured
by various of these degrees of freedom are the same. We
also show that various gauge invariant quantities have

autocorrelation functions rapidly decaying in time with
respect to the natural time scale in the system (defined by
the data rather than machine time).
Ideally we would study this problem in the matrix model

of [8], which is dual to M theory on flat space as the
discrete light-cone formulation of the theory. In that system
one has asymptotic states that can be scattered and could
lead to a black hole formation event with an S-matrix
interpretation. However, the initial conditions for that setup
are not understood: the gravitons are bound states at thresh-
old that necessitate solving the many body quantum dy-
namics in detail. Monte Carlo simulations of the matrix
dual black holes of this model have shown that the en-
semble is unstable due to the flat directions of the matrix
model potential [9]. The instability can be regulated with
mass terms that are naturally present in the BMN model.
Euclidean computations of the BMN model at equilibrium
have been performed in [10]. This Letter deals with the
time-dependent classical regime in the theory and the
dynamics of thermalization.
The BMN matrix model, which represents the plane-

wave geometry with maximal supersymmetry, solves the
problem of describing gravitons by having a different
classical solution for each graviton. Each of these gravitons
is represented by a fuzzy sphere. We lose the ability to
perform collisions with asymptotic states that scatter from
each other. However, as shown in [11], there are initial
conditions where the fuzzy spheres are displaced with
respect to each other and we can set up periodic brane
collisions (crossings) instead. The period for these setups,
�, is independent of the details of the graviton branes and
their velocities. This lets us measure time with a clock that
has a well-defined physical interpretation. These crossings
have classical instabilities associated with them: some
degrees of freedom are tachyonic during a brief time of
the � period and grow exponentially in the number of
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crossings until the system backreacts. The growth of fluc-
tuations has been understood with a linearized analysis
[11] and in the present Letter we extend that analysis to
the rest of the thermalization process where the dynamics
is very nonlinear. Classically these fluctuations can be set
to zero, but they will be present in the full dynamics
because of quantum mechanics.

We add noise to represent quantum fluctuations in the
initial conditions. Our configurations seed the modes that
would become tachyonic during some portion of the
� period [11]. We initialize each such mode with a
Gaussian probability function with a width determined
by @ and the adiabatic frequency of the mode. Once these
fluctuations grow sufficiently they take over and scramble
the system. The time scale for the initial exponential
growth is logarithmic in the size of the initial fluctuations,

which are proportional to
ffiffiffi
@

p
. We consider the system to

thermalize quickly if, subsequent to this period, the decay
of fluctuations back to equilibrium is fast. The analysis we
do is valid strictly only when @ is small. The solutions have
large energy of order N2, where N is the size of the
matrices. The energy does not scale with @. If these systems
thermalize, their temperature is large in quantum units.
This is exactly the regime where classical physics is valid,
for we only have finitely many degrees of freedom and all
of them will have large quantum numbers and can be
treated classically (this sets the limit of how big we can
make @ in practice). This means, in particular, that we can
ignore the fermions, for they only affect the low tempera-
ture regime.

In the rest of this Letter we discuss the numerical
implementation of the BMN matrix model and the evi-
dence for fast thermalization of the initial conditions we
chose.

Numerical implementation.—The bosonic degrees of
freedom of the BMN matrix model are the Hermitian
matrices Xi¼0;1;2 and Ya¼1;...;6 and their canonical conju-
gates Pi and Qa. The bosonic part of the Hamiltonian is

H ¼ 1
2 trðP2

i þQ2
a þ ðXi þ i�ijkXjXkÞ2

þ 1
4ðYaÞ2 � ½Xi; Ya�2 � 1

2½Ya; Yb�2Þ: (1)

We have rescaled the variables so that the classical equa-
tions of motion are independent of @ and all the quantum
mechanics is hidden in the initial conditions. We have also
normalized the mass of X to one; i.e., we measure time by
the oscillation period of one of the X modes.

Because of the UðNÞ gauge symmetry we must enforce
the Gauss’ law constraint:

C ¼ ½Xi; Pi� þ ½Ya;Qa� ¼ 0:

To solve the equations of motion we use a leapfrog algo-
rithm and we record the absolute value of the constraint
trðC2Þ as a check for the code. We find that the constraint is
well satisfied for the runs we perform, so we do not need to
implement constraint damping.

The main sources of difficulty are the initial conditions.
For this Letter, we have used the following initial classical
configuration:

X0¼ L0
n 0

0 0

 !

; X1¼ L1
n �x1

�xy1 0

 !

; X2¼ L2
n �x2

�xy2 0

 !

;

P0¼ 0 0

0 v

 !

; P1;2¼ 0¼Q1;...;6; Ya¼�ya:

The dimension of the matrices above is set to N ¼ nþ 1.
The Li are SU(2) angular momentum matrices in the
n-dimensional representation. This is a fuzzy sphere of
size n. The system has an additional eigenvalue that is
initially at the origin with velocity v in the positive X0

direction. These are the initial conditions discussed in [11]
with the addition of fluctuation seeds �x, �y. The �x, �y
are generated randomly using a complex Gaussian distri-

bution with a width proportional to
ffiffiffiffiffiffiffiffi
@=n

p
. We interpret

these as quantum fluctuations of the off-diagonal degrees
of freedom.
Recall that the ground state of an oscillator with

Hamiltonian 2H ¼ p2 þ!2x2 has a Gaussian wave func-
tion with squared width hx2i ¼ @=2!. In our case, because
of the initial conditions, all of the off-diagonal modes
between the lone eigenvalue and the fuzzy sphere have
approximately the same frequency of oscillation, propor-
tional to n [12].
The �xy are determined by forcing the matrices to be

Hermitian. All the off-diagonal �y components are gener-
ated by the same Gaussian distribution, whereas the diago-
nal ones are set to zero since they are subleading in N. This
is a very rough approximation for the Y modes connecting
the fuzzy sphere to itself, lumping them together as if they
all had the same mass. We do not add fluctuations in the
modes connecting the fuzzy sphere to itself in the X
variables as the unstable modes grow so quickly that
such fluctuations are not required. If the system thermal-
izes the fine details of the initial conditions get washed out
at later times, so we only need them to be qualitatively
correct. Notice that our initial conditions are built to ex-
actly satisfy C ¼ 0 while preserving the typical size of
quantum fluctuations for the space variables. This is why
we have no fluctuations of the P,Q variables nor of the off-
diagonal modes of X0 connecting the lone eigenvalue and
the fuzzy sphere.
The discretized matrix equations of motion read

Xtþ�t ¼ Xt þ Ptþ�t=2�t;

Ptþ�t=2 ¼ Pt��t=2 � @V

@X
jt�t;

and similarly for the Y modes. Here V is the potential
obtained from Eq. (1). The parameter �t and the total
number of iterations of the leapfrog algorithm can be
varied in the numerical code. We record the matrix con-
figurations every few steps.
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Because of the accumulation of numerical rounding
errors, every few steps we need to force the matrices to
be Hermitian. We do this right before recording configu-
rations. We also vary the random seed to generate an
ensemble with Gaussian distributions and check that the
results are robust against these variations. A more detailed
description of the code and a more comprehensive presen-
tation of the numerical results and their interpretation
will be presented elsewhere (also see Supplemental
Material [13]).

Results.—We now describe some useful ways to visual-
ize the information contained in the X, Y modes and their
time derivatives. To describe the thermodynamics, we need
to coarse grain the degrees of freedom, which must be
gauge invariant combinations of X and Y. The simplest
such combinations are traces of matrix products. We can
use these to compare different values of N and to study the
large N thermodynamic limit. Note that the traces of the
matrices Xi and Ya are decoupled: the nonlinear parts of
the equations of motion are commutators, so the traces of
the matrices evolve independently from the rest of the
system. The trace of Xi oscillates with angular frequency
! ¼ 1, while the trace of Ya oscillates with ! ¼ 1=2.
Because of our initial conditions, only the trace of the X0

mode is excited and it serves as our clock.
The other invariant way towork with matrices is in terms

of their eigenvalues. These can tell us about the dual
D-brane geometry. When the matrices are approximately
commuting there is a clear geometric interpretation: the
eigenvalues are positions of D-branes. When the matrices
do not commute they still serve to roughly describe the
distribution of D-branes inside the fuzzy object. In Fig. 1
we plot the eigenvalues of X0ðtÞ.

Initially all of the motion is in the lone eigenvalue and
the other eigenvalues are evenly spaced—a property of the
fuzzy sphere. As time goes by, the eigenvalues collapse to a

much smaller vertical extent and oscillate collectively. The
eigenvalues become very unevenly spaced and upon zoom-
ing in appear to repel each other, showing a typical behav-
ior of random matrices. Qualitatively, they behave like a
Dyson gas [14], but a detailed comparison is beyond the
scope of the present Letter.
It is also interesting to study the size of the system in

different directions. We do this by evaluating the standard
deviations of the eigenvalues of the matrices, see Fig. 2.
As shown in the figure, the fuzzy sphere collapses in size

substantially. After the sphere has largely collapsed, the Y
modes grow from zero and converge to a value that is very
close to the late-time value for the X modes. Their growth
is controlled by the random time variation of their effective
mass after collapse. It is because of this that we needed to
include fluctuations for most of the Y modes. The subset of
Y modes connecting the fuzzy sphere and the eigenvalue
do not grow enough in the initial phase and the time for
fluctuations of those modes to converge is substantially
longer. The size has only small fluctuations after conver-
gence and the system seems to stabilize rapidly. The figure
suggests that the object is becoming nearly spherical, a
property shared by black holes without angular momen-
tum. However, the corresponding dual black holes should
have some deformation since they are not in asymptotically
flat space.
To test for thermalization, we compare time averaged

distributions over successive configurations to those of the
Gibbs ensemble for the classical system at some tempera-
ture T. Using the Gibbs measure dPdQ expð�H=TÞwe see
that the momentum variables factorize into Gaussian in-
tegrals. Thus the momenta are determined by the Gaussian
ensemble for Hermitian matrices. It is well known that the
distribution of eigenvalues (sufficiently coarse grained)
should be a semicircle. We test this for the P0 and Q1

matrices starting way after the system looks thermalized
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FIG. 1. Eigenvalue evolution for X0. Here and in the following
figures we have set n ¼ 10, v ¼ 20, and @ ¼ 0:001. The
time axis is in discrete time units between recordings of
configurations.

500 1000 1500 2000
t

1
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std Y2

std Y1

std X1

std X0

Time

FIG. 2. Standard deviation of eigenvalues for the matrices X0;1

and Y1;2. We use the trace of X0, rescaled, to keep track of time
(black curve at the bottom). Other values of n, v, and @ are
qualitatively similar, see Supplemental Material [13].
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(e.g., after t� 600 in Fig. 2). We wait until t ¼ 5000 to
measure thermal properties just to make sure. This is
shown in Fig. 3.

The semicircle model matches the data well for both the
X and Y momenta, which have the same distribution. This
suggests that the system has thermalized, as the tempera-
ture measured from the X’s is the same as that measured
from the Y’s.

Now that we have numerical evidence for thermalization
we can study near-equilibrium configurations and fluctua-
tion decay rates. This information can be obtained from the
autocorrelation function hOðtÞOyðtþ aÞi, where OðtÞ is
some classical gauge invariant observable. This is an
application of the fluctuation-dissipation theorem. This is
averaged over t well after thermalization. The simplest
observables we can consider are of the form trðX1 þ
iX2ÞL. Similar traces are identified with graviton modes
in N ¼ 4 super Yang-Mills theory [1], where they are
interpreted as having angular momentum L along the dual

S5. Here, L denotes angular momentum in the c12 plane of
the X variables. Higher L values correspond to higher
spherical harmonics in the dual geometry. For L ¼ 1, as
we have seen, the mode is decoupled, so the simplest
nontrivial case will be for L ¼ 2, shown in Fig. 4 (top).
We can see that the autocorrelation for L ¼ 2 dies off
quickly, with respect to the natural external clock. We
also note that it oscillates in an interesting pattern, indicat-
ing that there are internal oscillation times of the variables
associated with the thermalized system. Relative to these
internal oscillations the autocorrelation function decays
quickly (by half within 2 oscillations), so the associated
vibration modes have a low quality factor. This indicates
fast thermalization. In Fig. 4 (bottom) we compare auto-
correlations for higher L. We notice that the higher the L,
the faster the autocorrelations decay. This is expected from

black hole physics and the membrane paradigm of the
horizon: when information approaches the membrane, it
diffuses along the membrane until it becomes uniform.
Diffusion happens first at short distance scales and then
cascades to large scales. So this is evidence for an approxi-
mate notion of locality in the angular directions even in the
thermal regime.
D. B. would like to thank F. Dyson, D. Kabat,

J. Maldacena, and H. Verlinde for discussions. Work
supported by DE-FG02-91ER40618 (C.A and D. B) and
DE-FG02-95ER40896 (D. T).
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FIG. 3 (color online). The eigenvalues of P0 andQ1 are binned
from t ¼ 5000 to t ¼ 20000 every ten steps, using the same time
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