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We study tunneling pair creation of W bosons by an external electric field on the Coulomb branch of

N ¼ 4 supersymmetric Yang-Mills theory. We use AdS/CFT holography to find a generalization of

Schwinger’s formula for the pair production rate to the strong coupling, planar limit which includes the

exchange of virtual massless particles to all orders. We find that the pair creation formula has an upper

critical electric field beyond which the process is no longer exponentially suppressed. The value of

the critical field is identical to that which occurs in the Born-Infeld action of probe D3-branes in the

AdS5 � S5 background, where AdS5 and S5 are 5-dimensional anti–de Sitter space and the 5-sphere,

respectively.
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One of the interesting attributes of string theory is the
existence of an upper critical electric field [1,2]. Opposite
electric charges reside at the end points of open strings.
An electric field pulls them in opposite directions. When
the field exceeds the string tension, the barrier to stretching
the string disappears and strings are unstable. One might
wonder, especially in light of AdS/CFT holography,
whether this phenomenon can also be visible in a quantum
field theory.

In this Letter, we shall address this issue in the quantum
field theory for which holography is most firmly estab-
lished, the superconformal N ¼ 4 Yang-Mills theory.
There, we can find an electric field by studying the theory
on the Coulomb branch, with gauge group UðN þ 1Þ spon-
taneously broken by a vacuum expectation value of the
scalar fields to Uð1Þ �UðNÞ. We then consider an electric
field of the Uð1Þ gauge theory. It would act on the massive
W bosons which haveUð1Þ charges�gYM (the Yang-Mills
coupling constant) and transform in the fundamental rep-
resentation of the residual gauge group UðNÞ. The W
bosons are 1

2 -BPS particles and form a short multiplet of

the N ¼ 4 supersymmetry algebra which contains scalar,
spinor, and vector fields. We will study a dynamical pro-
cess, the Schwinger effect of pair production for W�
bosons in a constant electric field.

Before we discuss holography, let us consider a simple
field theory argument as to why there could be an upper
critical electric field. In order to become real particles, a
virtual particle-antiparticle pair that is created by a vacuum
fluctuation must gain an energy equal to its combined rest
masses 2m (we set c ¼ 1 ¼ @). This energy could be
supplied by an electric field where the pair is pulled in
opposite directions. Upon separating by a distance d, the
pair gains energy Ed and becomes physical particles when

d� 2m=E. This process is tunneling through a barrier of
height �2m and width �2m=E. The amplitude should
therefore be suppressed by an exponential of the product,

� m2

E . Exponential suppression with this quantity in the

exponent indeed appears in the formula for the tunneling
probability which was computed long ago by Schwinger
[3] and is quoted in Eq. (6) below. We shall be interested in
how Coulomb interactions would modify this effect. With
a Coulomb interaction added, the tunneling barrier has
profile VeffðdÞ ¼ 2m� Ed� �

d , where � contains the

electric charge.
This barrier is shown in Fig. 1 for different values of the

electric field. If the field is sufficiently small, it is positive in
a certain range of distances, and the asymptotic region
where the particles can be on-shell is separated from the
origin, where the pair is created, by a potential barrier.
Consequently, at small fields the pair creation is a tunneling

d0

Veff

E<Ec

E=Ec
E>Ec

FIG. 1. The energy barrier Veff to pair creation is plotted
versus the pair separation d for various values of the electric
field.
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process and its amplitude is exponentially suppressed.
However, when the field reaches the critical value, the
potential is negative everywhere and pair creation does
not require tunneling. Its probability is no longer exponen-
tially suppressed. The N ¼ 4 Yang-Mills theory that we
are interested in is indeed in a Coulomb phase and the
effective coupling of the planar limit of the theory at large
’t Hooft coupling, � ¼ g2YMN, deduced from an AdS/CFT
computation of theW bosonWilson loop for parallel lines in

Ref. [4] is � ¼ 4�2
ffiffiffi
�

p
�4ð14Þ

. An estimate of the critical field is

Ec �m2

�
¼ �4ð14Þm2

4�2
ffiffiffiffi
�

p � 0:70
2�m2ffiffiffiffi

�
p ; (1)

which is remarkably similar to one which we shall find in
(5) below using holography. This simple argument under-
estimates it by about 30%.

In the IIB string theory, which is the holographic dual of
N ¼ 4 Yang-Mills theory, the breaking of UðN þ 1Þ by
the Higgs mechanism to Uð1Þ �UðNÞ is obtained by sep-
arating one D3-brane from a parallel stack of N coincident
D3-branes. W bosons are open strings stretched between
the separated D3-brane and the stack. In the large N
limit, the stack ofD3-branes is replaced by the background
spacetime AdS5 � S5 which is the product of 5-
dimensional anti–de Sitter space AdS5 and the 5-sphere

S5 and has metric dS2¼L2ðr2dx�dx�þdr2

r2
þd�2

5Þ and N

units of the Ramond-Ramond 4-form flux. The radius of
curvature L of the background is related to the Yang-Mills
theory ’t Hooft coupling � ¼ g2YMN and the fundamental

string scale ‘s ¼
ffiffiffiffiffiffiffiffiffiffiffi
2��0p

by L2 ¼ ffiffiffiffi
�

p
‘2s=2�. The probe

D3-brane fills the four space-time dimensions x� and sits
at a fixed AdS radius r0 and at a point on S

5 [given by a unit
6-vector n̂ in (10) below]. In the largeN planar limit, where
N is set to infinity holding � fixed, and then in the large �
limit, the probe D3-brane can be treated as a classical
object embedded in AdS5 � S5 [5]. It has a world-volume
metric ds2 ¼ L2r20dx�dx

� and a Uð1Þ world-volume

gauge symmetry. If we turn on an electric field E on the
world volume of the probe brane, it is described by the
Dirac-Born-Infeld and Wess-Zumino actions [8],

S ¼ T3

Z
d4x

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� � ‘2sF��Þ

q
þ!ð4Þ

�
; (2)

¼ L4r40
2�‘4sgs

Z
d4x

0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ‘4s

L4r40
E2

s
þ 1

1
A: (3)

Here, T3 is the D3-brane tension, !ð4Þ is the Ramond-
Ramond 4-form, and gs ¼ g2YM=4� is the closed string
coupling constant. For a flat brane on flat space, g�� in (2)

would be replaced by the flat Minkowski space metric
diagð�1; 1; 1; 1Þ and (2) would indeed be singular for an
electric field where the argument of the square root van-
ishes, Eflat

crit: ¼ 1
‘2s
¼ 1

2��0 , equal to the flat space string

tension, as expected. In the AdS background, the metric in
(2) has a warp factor, the appropriate action is (3), and it
also has a critical field, Ec ¼ L2r20=‘

2
s . It is interesting to

write this critical field using Yang-Mills theory parameters.
The parameter r0 is related to the mass of the W boson,
which is given by the energy of a fundamental string that is
suspended between the probe brane at r ¼ r0 and the
Poincarè horizon at r ¼ 0. The world sheet metric of

such a string would be d�2 ¼ L2ð�r2dt2 þ dr2

r2
Þ and the

mass is

m ¼ 1

‘2s

Z r0

0
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgðt; rÞj

q
¼ L2

‘2s

Z r0

0
dr ¼

ffiffiffiffi
�

p
r0

2�
: (4)

Using (4) to eliminate r0 from our expression for the
critical electric field, we conclude that

Ec ¼ 2�m2ffiffiffiffi
�

p : (5)

Duality then indicates that the large N and large � limit of
N ¼ 4 Yang-Mills theory on its Coulomb branch also has
this critical field, which should be compared with (1). In
the following, we will examine the field theory manifesta-
tion of this critical field in more detail.
Schwinger’s formula [3] for the probability of the

production of charged particle-antiparticle pairs, P ¼
1� e��v, where the contribution to � from a particle
with spin j and mass m in a constant electric field E over
space-time volume v is

�j ¼ ð2jþ 1ÞE2

8�3

X1
n¼1

ð�1Þðnþ1Þð2jþ1Þ

n2
e�½ð�m2nÞ=jEj�: (6)

This formula applies to a weak coupling limit where ra-
diative corrections from the emission and reabsorption of
virtual particles are neglected. It can be computed, as
Schwinger originally did, from a proper time representa-
tion of the appropriate Feynman diagrams. Alternatively, it
can be found (for a spin 0 particle) from the imaginary part
of the Euclidean worldline path integral

�0 ¼ � 2

v
=
Z 1

0

dT

T

Z
Dx�e

�
R

1

0
d�½ð _x2=4TÞþm2T�iA� _x��; (7)

with periodic boundary conditions x�ð�þ 1Þ ¼ x�ð�Þ. For
a constant field, A� ¼ � 1

2F��x�. The nonzero compo-

nents of F�� are F12 ¼ �F21 ¼ �iE, the ‘‘i’’ is a result

of analytic continuation to Euclidean space, and we shall
assume E> 0. As the exponentials in the summand in (6)
suggest, (7) can be computed as a sum over instanton
amplitudes for tunneling through the potential barrier of
pair creation [9]. In Euclidean space, the electric field acts
as a magnetic field and the instanton of the Euclidean
worldline path integral is a cyclotron orbit of the charged
particle, that is, a circle trajectory. The integer n, which is
summed in (6), is the number of instantons, which is the
number of times the particle traverses the circle. With the
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solution of the equation of motion for T, T ¼ 1
2m

ffiffiffiffiffiffiffiffiffiR
_x2

q
,

and the circle ansatz, x0� ¼ Rr̂ where r̂¼ ðcosð2�n�Þ;�
sinð2�n�Þ;0;0Þ, n ¼ 1; 2; . . . , the classical action is

Sclð0Þ ¼ 2�nRm� 2�nER2

2
: (8)

The classical equation of motion for x� is solved when R is

adjusted to an extremum of (8), R ¼ m=E, which is a
maximum. Fluctuations of R are tachyonic and integrating
them would produce the factor of ‘‘i’’ which gives the
Euclidean path integral an imaginary part. Substituting

R ¼ m=E into (8) yields Sclð0Þ ¼ �m2

E n which is identical

to the exponent in Schwinger’s formula, Eq. (6). To deter-
mine the prefactor of the exponential in (6) it is necessary
to analyze fluctuations about the classical solution.
Reference [9] showed how to get the prefactor of the
n ¼ 1 term by doing the quadratic integral over fluctua-
tions. Though it would be desirable to do so here, for
example, to understand the nature of the amplitude when
exponential suppression is absent, we will not address this
interesting problem in the present paper, but will reserve it
for a more detailed exposition elsewhere.

In the planar limit of N ¼ 4 Yang-Mills theory,
Schwinger’s formula (6) applied to W bosons would be
modified in a number of ways. It will have an overall factor
of N to reflect the number of W bosons and it comes from
the vacuum energy with one W-boson loop. Contributions
with additionalW-boson loops are suppressed by factors of
1=N and can be ignored in the large N limit. As well,
contributions from virtualUð1Þ photons are proportional to
g2YM ¼ �=N and are suppressed at large N. Interactions
with the massless particles of the unbroken UðNÞ gauge
theory are ignored in the weak coupling limit which pro-
duces (6), but must be included as, in the large N limit,
planar Feynman diagrams will contribute at all orders in �.
For a scalar field in the W-boson supermultiplet, these
contributions (as well as the overall factor of N) can be
taken into account by adding a Wilson loop amplitude to
the path integral (7). The action in (7) becomes

S ¼
Z 1

0
d�

�
_x2

4T
þm2T þ iF��

2
x� _x�

�
� lnW½x��; (9)

where W½x�� is the Wilson loop. The appropriate quantity

(in the large W-mass limit) is [4,10,11]

W½x� ¼ hTrP e
R

T

0
d�ði _x�A�þj _xjn̂I�IÞi: (10)

Here, n̂I is a unit vector in the direction of the scalar field
condensate h�Ii. The gauge field A and scalar �I trans-
form in the adjoint representation of SUðNÞ and the trace
over SUðNÞ indices is of order N. The path integral with
action (9) is semiclassical when the mass of theW boson is
large, m2 � E. We shall also consider strong coupling,
� � 1. These limits are compatible with electric fields in

the range E� m2ffiffiffi
�

p where we expect to find a critical field.

The conformal symmetry of N ¼ 4 Yang-Mills theory
implies that, when evaluated on a circle, x ¼ Rr̂, W is a
function of mR and rotation symmetry implies
	

	x� W½x�jx¼Rr̂ ¼ r̂�
d
dRW. Consequently, once the radius

is adjusted to an extremum of the action, now including
the Wilson loop, the circle is still a solution of the classical
equation of motion derived from (9). Moreover, for the
infinite mR limit, exact results for W½circle� [12–14] and
an expression for quadratic fluctuations about a straight
line [15,16] which can easily be adapted to a circle are
available. Indeed, the known strong coupling behavior

for a circle (wrapped n times), lnW � n
ffiffiffiffi
�

p
, combined

with (8) would lead to a corrected classical action Sclð1Þ ¼
ð�m2

E � ffiffiffiffi
�

p Þn which suggests a critical behavior at large �

where Sclð1Þ goes to zero and the sum over n in the

Schwinger amplitude would no longer be exponentially
suppressed. However, the computation of the Wilson
loop we are using is already specialized to infinite

mR� m2

E . [A symptom of the problem is the fact that the

criticalE that wewould estimate from the discussion above
differs from (5) by a factor of 2.]
To correctly estimate lnW, we shall need the expectation

value of the appropriate loop with a large but finiteW mass.
For this we return to the probeD3-brane placed at radius r0
in AdS5 and replace the action in (8) by the disc amplitude
for a string which intersects a probeD3-brane on the circle,
xð�Þ ¼ Rr̂ and couples to the electric field at the boundary
of its world sheet. In the large � limit, the string sigma
model is semiclassical and the problem reduces to finding a
disc of extremal area. The sigma model action in the
conformal gauge is

Sst¼ L2

2‘2s

Z 1

0
d�

Z 1

�0

d�

�
r2@X�

�@X�þ@r �@r

r2

�
þ i

I
A; (11)

where ð@; �@Þ ¼ ð@� � i@�Þ. The last term is the coupling of
the boundary of the string world sheet to the gauge field.
The equations of motion, Virasoro constraints, and bound-
ary conditions are

@ �@r ¼ r3@X �@Xþ 1

r
@r �@r; @aðr2@aX�Þ ¼ 0; (12)

r2ð@XÞ2 þ ð@rÞ2
r2

¼ 0; r2ð �@XÞ2 þ ð �@rÞ2
r2

¼ 0; (13)

Xð�; �0Þ ¼ Rr̂ð�Þ; rð�; �0Þ ¼ r0: (14)

They have the solution

X ¼ coshð2�n�0Þ
coshð2�n�Þ Rr̂; r ¼ r0

tanð2�n�0Þ
tanhð2�n�Þ ; (15)

when sinhð2�n�0Þ ¼ 1=Rr0. We then replace (8) with the
on-shell string action, found by substituting (15) into (11)
and using (4) to get [17]
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Sclð2Þ ¼ n

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�mRÞ2 þ �

q
� ffiffiffiffi

�
p �

� 1

2
ð2�nÞER2: (16)

This expression should be accurate when mR is large and
when � is large. It reproduces (8), corrected by the Wilson

loop term�n
ffiffiffiffi
�

p
in the limit where mR � ffiffiffiffi

�
p

. The radius
should now be fixed to an extremum of (16),

R ¼ 1

2�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2�m2

E

�
2 � �

s
: (17)

There is a critical value of the electric field where this
radius shrinks to zero, given by the value of the critical field
Ec in (5). The classical action

Sclð2Þ ¼ n
ffiffiffiffi
�

p
2

0
@

ffiffiffiffiffiffi
Ec

E

s
�

ffiffiffiffiffiffi
E

Ec

s 1
A2

(18)

also vanishes when E approaches Ec and the summation
over n is unsuppressed. Moreover, it agrees with the
Schwinger result in the weak field E � Ec limit.

The world sheet in (15) can be continued to Lorentzian
signature where it is the locus of�t2 þ x2 þ 1=r2 ¼ R2 þ
1=r20 with r 	 r0, that is part of AdS2. At any fixed time, t,
the profile of the string is

xðt; rÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ R2 þ 1

r20
� 1

r2

s
(19)

and is depicted in Fig. 2. The end points on the probe brane
at r ¼ r0 are the position of the particle and the antiparticle

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ R2

p
. At t ¼ 0, they are separated by a distance 2R.

After the initial time, the particle and antiparticle follow
trajectories with a constant proper acceleration of magni-
tude a ¼ 1

R and in opposite directions. If they were simple

charged particles with massm, the electric field would give
them proper acceleration a ¼ E

m , agreeing with the result

R ¼ m
E for the radius that was found by extremizing the

action (8). When we extremize the stringy action (16) to
get (17), the radius has decreased, so the proper accelera-

tion is greater, a ¼ E=mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðE=EcÞ2

p . The end point of the string

in a strong electric field seems to have less inertia than a
particle would have. Remember that a particle is a string
which hangs from the probe brane to the Poincaré horizon,
whereas the appropriate string for our problem here, shown
in Fig. 2, never reaches the Poincarè horizon; rather, it lags
behind the end point and it joins with the string of the
antiparticle. This join persists regardless of the separation.
(There is no Gross-Ooguri phase transition [19] in this
case.) This joining of the string is responsible for the
classical action in (16) which is slightly smaller an
the analogous one for a relativistic particle given in (8).
In the field theory language, the effect can be seen as
coming from the � dependence of the action and it reflects
the negative Coulomb interaction energy of the particle and
antiparticle, which persists at strong coupling, and was the
basis for our argument leading to Eq. (1).
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