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A method is proposed for obtaining the spectrum for noise that causes the phase decoherence of a qubit

directly from experimentally available data. The method is based on a simple relationship between the

spectrum and the coherence time of the qubit in the presence of a � pulse sequence. The relationship is

found to hold for every system of a qubit interacting with the classical-noise, bosonic, and spin baths.
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Introduction.—Implementation of quantum information
processing (QIP) requires maintaining the quantum coher-
ence of a system during its operation. In reality, however,
systems are not completely isolated from the environment.
Interactions with the environment are system noise and
cause decoherence. One of the challenges in QIP imple-
mentation is to control the system appropriately in a noisy
environment and/or to reduce the noise level by weakening
the system-environment coupling. Strategies for these
approaches have been developed, including quantum error
correction [1–3], quantum estimation [4,5], and dynamical
decoupling (DD) [6–17].

In DD, the application of multiple � pulses cancels
out the noise and effectively suppresses the system-
environment coupling [6]. This basic idea of DD comes
from concepts in pulsed nuclear magnetic resonance
(NMR) [18]. Experiments have demonstrated that decoher-
ence can be suppressed by using methods common to
pulsed NMR, such as alternating-phase-Carr-Purcell
(APCP) and Carr-Purcell-Meiboom-Gill (CPMG) methods
[19,20]. Subsequent theoretical [7–14] and experimental
[15–17] studies on DD in various kinds of spin- and
charge-related qubit systems other than NMR compared
several DD methods and suggested that optimization of
DD requires knowledge of the noise properties.

For any strategy (not only DD), knowledge of the noise
properties is helpful because it can be used to improve the
strategy. It is therefore important to identify the noise
properties of the environment. For longitudinal decoher-
ence (energy relaxation) noise, the noise spectrum can be
obtained from the longitudinal relaxation time (called T1 in
NMR) [18,21,22], and a qubit (two-level system) has been
proposed as a noise spectrum analyzer [23]. In contrast,
a method for measuring transverse decoherence (pure de-
phasing) noise has not been established although several
methods (also using a qubit) have recently been proposed
[10,24,25]. In Ref. [24], it was pointed out that the rela-
tionship between noise spectrum and coherence can be
used for estimating the spectrum. In Ref. [10], a method

was described for obtaining the moments of the spectrum
by using the Uhrig pulse sequence [8]. In Ref. [25],
a method was described for obtaining the spectrum at
the Rabi frequency by using a nearly continuous and on-
resonant control field.
In this Letter we propose a method for measuring the

dephasing noise spectrum in which a simple sequence
of equidistant � pulses (such as an APCP or CPMG
sequence) is used. The spectrum at frequency �=2�, where
2� is the interval between pulses, is evaluated directly
from experimentally obtained values of the coherence
times by using a relationship between the noise spectrum
and the coherence time for a sequence of a sufficiently
large number of pulses. We show that this relationship
holds for the classical-noise, spin-boson, and spin-spin
bath models.
Model and noise spectrum.—We use a model of a single

qubit (spin S ¼ 1=2) interacting with the environmental
degrees of freedom (bath). The Hamiltonian of the total
system is given by

Ĥ ¼ @

2
ð�þ �̂Þ�̂z þ Ĥbath; (1)

where �̂ and Ĥbath are the bath operators. The Pauli matri-
ces of the qubit are denoted by �̂x, �̂y, and �̂z. This is a

pure dephasing model because the interaction Hamiltonian

Ĥint ¼ ð@=2Þ�̂�̂z between the qubit and bath includes only
�̂z. In other words, there is no energy relaxation in this
model (T1 is infinite in NMR terminology). The spin
(qubit) is subject to a static magnetic field� and a random

magnetic field (noise) �̂ in the z direction; the random field

�̂ is generated by the bath.
There are several variations of the model depending on

the nature of the bath. Here we consider three of them. The
first is a classical-noise model [10], where � is a stationary
Gaussian stochastic process (classical random variable)

with zero mean. (In this case, Ĥbath does not appear.) The
second one is a spin-boson model [6,8,9] in which
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�̂ ¼ P
j�jðb̂yj þ b̂jÞ and Ĥbath ¼ P

j@!jb̂
y
j b̂j, where b̂j

(b̂yj ) is the jth mode annihilation (creation) operator of

the bosonic bath, and �j is the coupling strength between

the qubit and the jth mode boson. The third one is a spin-

spin bath model [26] in which �̂ ¼ P
j�jðŝjþ þ ŝj�Þ and

Ĥbath ¼
P

jð@=2Þ!jŝ
j
z, where ŝjþ ¼ ŝjx þ iŝjy and ŝj� ¼

ŝjx � iŝjy. Here, ŝ
j
x, ŝ

j
y, and ŝjz are, respectively, the x, y,

and z components of the Pauli matrices of the jth spin in
the bath, and �j is the coupling strength between the qubit

(spin of interest) and the jth spin (in the bath).
The noise spectrum is defined as the symmetrized power

spectral density function of the random field:

Sð!Þ ¼
Z 1

�1
dtei!t 1

2
h ��ðtÞ ��ð0Þ þ ��ð0Þ ��ðtÞibath: (2)

In the classical-noise model, h� � �ibath is the average over

the stochastic variable [ ��ðtÞ ¼ �ðtÞ]. In the spin-boson

and spin-spin bath models, ��ðtÞ ¼ eiĤbatht=@�̂e�iĤbatht=@,
and h� � �ibath ¼ Trbathð�̂eq

bath � � �Þ is the average in an equi-

librium state of the bath (�̂eq
bath ¼ e��Ĥbath=Zbath).

Pulse sequence and generalized coherence time.—The
density matrix (which describes the state) of the qubit is
denoted by �̂s. In the classical-noise model, �̂s is given by

the average of ^̂�s over the stochastic variable: �̂s¼h ^̂�sibath,
where ^̂�s is the qubit state with one realization of the
stochastic variable. In the spin-boson and spin-spin bath
models, �̂s is given by the partial trace of the density
matrix �̂ of the total system: �̂s ¼ Trbath�̂.

The coherence is quantified using a nondiagonal
component of the density matrix of the qubit: �s;þ�¼
hþj�̂sj�i. Here, j�i is the eigenstate of �̂z corresponding
to the eigenvalue �1. Experimentally, the coherence is
measured using the transverse (x and y) components of
the qubit (spin) and the relations h�̂xi ¼ 2Re�s;þ� and

h�̂yi ¼ �2Im�s;þ�.
Now we consider a situation in which ideal (instanta-

neous) � pulses (about the x or y axis) are repeatedly
applied to the qubit. As shown in Fig. 1(a), the pulses are
applied at times t1; t2; . . . ; tn, where n is the total number of
pulses. After the application of the sequential pulses,
we measure the normalized coherence at time t (> tn):
WðtÞ ¼ j�s;þ�ðtÞj=j�s;þ�ð0Þj.

When we apply a sufficiently large number of pulses
(keeping the minimal interpulse time fixed, so that t is also

sufficiently large), the coherence exhibits an exponential
decay (as shown in the models later):

WðtÞ � expð�t=TL
2 Þ: (3)

This time dependence enables us to define uniquely the
coherence time TL

2 for a multiple-pulse sequence, which
we call ‘‘generalized’’ coherence time (for a reason men-
tioned later). TL

2 differs from conventional coherence time
TSE
2 , which is defined using spin echo (SE) experiments

(TL
2 > TSE

2 in most cases). Generally, it can be shown that

TL
2 depends on the pulse sequence.
In the three models, the time evolution of the normalized

coherence in the presence of a pulse sequence can be
expressed as (weak coupling condition �j � !j is neces-

sary for the spin-spin bath model) [8–10,26,27]

WðtÞ ¼ exp

�
�
Z 1

0

d!

2�
Sð!Þj~ftð!Þj2

�
; (4)

~ftð!Þ ¼
Z 1

�1
dt0ei!t0ftðt0Þ; (5)

ftðt0Þ ¼
Xn

k¼0

ð�1Þk�ðtkþ1 � t0Þ�ðt0 � tkÞ; (6)

where t0 ¼ 0, tnþ1 ¼ t, and ftkgnk¼1 is the set of times when

the pulses are applied, and �ðTÞ is the Heaviside step
function. As shown in Fig. 1(b), ftðt0Þ depends on the pulse
sequence and takes a nonzero value (þ 1 or �1) only
for 0< t0 < t.
Relationship between TSE

2 and S.—Before presenting

the main results, we show the relationship between
TSE
2 and S. For the SE pulse sequence (�=2ðxÞ � ��

�ðxÞ � �–signal), we can easily find that j~ftð!Þj2 ¼
ð16=!2Þsin4ð!�=2Þ. Substituting this into Eq. (4) and
using the asymptotic behavior ð1=!2Þsin4ð!�=2Þ �
ð�=4Þ	ð!Þ� as � ! 1, we get the asymptotic � depen-
dence of the SE coherence WSEð2�Þ,

WSEð2�Þ � exp

�
� 1

2
Sð0Þ2�

�
as � ! 1; (7)

which yields the relationship between TSE
2 and S:

1

TSE
2

¼ 1

2
Sð0Þ: (8)

Although this formula is common in the field of NMR
[18,28], it has a significant implication; we should use the
asymptotic exponential decay of the SE coherence to de-
fine TSE

2 , as seen in Eq. (7) [29,30]. This is contrastive to

the usual evaluation of coherence time in SE experiments,
in which the behaviors of the SE coherence at smaller � are
generally used. Their use would not provide a unique
definition of coherence time because the functional form
of the SE coherence at smaller � depends on the systems.
[In some systems exponential decays are observed with

0 t1 t2 t3 t4 t5 tn-1 tn t

(a)

(b) f (t’)t
1

-1
t’

FIG. 1. (a) Illustration of a � pulse sequence. (b) Function
ftðt0Þ corresponding to illustration (n: even).
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certain time constants (different from TSE
2 in some cases),

while in other systems Gaussian decays are observed with
certain time constants (different from TSE

2 ).]

Relationship between TL
2 and S.—In the long time limit

(large n limit) keeping the minimal interpulse time fixed,

we get the power spectral density function of ftðt0Þ: Ið!Þ �
limt!1ð1=tÞj~ftð!Þj2. Hence j~ftð!Þj2 � Ið!Þt as t ! 1.
From this and Eq. (4), we find that the asymptotic behavior
of the coherence is an exponential decay:

WðtÞ � exp

�
�
Z 1

0

d!

2�
Sð!ÞIð!Þt

�
as t ! 1: (9)

The necessary number of pulses to extract this asymptotic
exponential decay is independent of the noise spectrum
because ftðt0Þ is determined only by the pulse sequence.
Comparing this equation with the definition of TL

2 [Eq. (3)],
we obtain

1

TL
2

¼
Z 1

0

d!

2�
Sð!ÞIð!Þ: (10)

If the sequence consists of equidistant pulses with tkþ1 �
tk ¼ 2� (k ¼ 1; 2; . . . ; n� 1), ftðt0Þ is a periodic function
of t0 with a period of 4� (for 0< t0 < t). In this case,
the power spectral density function Ið!Þ (with fixed �)
becomes

Ið!Þ ¼ 2�
X1

m¼�1
jCmj2	ð!�!mÞ; (11)

where !m ¼ m�=2�, and Cm is the Fourier coefficient of

ftðt0Þ: Cm ¼ ð1=4�ÞR4�
0 dt0ei!mt

0
ftðt0Þ. Substituting Eq. (11)

into Eq. (10), we obtain

1

TL
2

¼ X1

m¼0

jCmj2Sð!mÞ: (12)

As an example, we investigate the use of the APCP pulse

sequence: �=2ðxÞ� f���ðxÞ� 2���ð �xÞ��gn=2–signal
(n: even). For this pulse sequence,

ftðt0Þ ¼

8>>>><
>>>>:

1 for 4k� < t0 < ð4kþ 1Þ�
and ð4kþ 3Þ� < t0 < 4ðkþ 1Þ�;

�1 for ð4kþ 1Þ� < t0 < ð4kþ 3Þ�;
0 otherwise;

where k ¼ 0; 1; 2; . . . ; n� 1. This yields jCmj2 ¼
ð4=�2m2Þ	m;2lþ1 (l ¼ 0; 1; 2; . . . ). Hence we finally obtain

1

TL
2

¼ 4

�2

X1

l¼0

1

ð2lþ 1Þ2 Sð!2lþ1Þ: (13)

Note that we obtain the same result for the Carr-Purcell and
CPMG sequences because we assume ideal (instantaneous)
pulses. [To avoid pulse-error accumulation in actual ex-
periments (with nonideal pulses), one should use CPMG or
APCP.] Since the factor 1=ð2lþ 1Þ2 is smaller for larger l,
we can approximate the above equation into

1

TL
2

’ 4

�2
Sð�=2�Þ; (14)

if Sð!Þ rapidly decreases as ! increases. Equations (13)
and (14) are the main results of this Letter.
These relationships are qualitatively explained as

follows. In many systems, coherence time is dominated
by the lowest-frequency component of the noise spectrum
(fluctuation-dissipation relation). The pulse sequence with
time interval�� cancels out the noise at frequencies lower
than 1=� (dynamical decoupling). Therefore, the noise
spectrum around the frequency 1=� dominantly contributes
to the coherence time in the presence of the pulse
sequence.
Note that the infinite � limit of Eq. (13) is consistent with

Eq. (8):

lim
�!1

1

TL
2

¼ 4

�2
Sð0ÞX

1

l¼0

1

ð2lþ 1Þ2 ¼
1

2
Sð0Þ ¼ 1

TSE
2

; (15)

where we use lim�!1!2lþ1 ¼ 0; 8 l in the first equality,
and

P1
l¼0 1=ð2lþ 1Þ2 ¼ �2=8 in the second equality. This

equation enables us to interpret TL
2 as a generalization of

TSE
2 into nonzero frequencies, which is the reason we call

TL
2 ‘‘generalized coherence time.’’
Similarly, the infinitesimal � limit of Eq. (13) is given by

lim
�!þ0

1

TL
2

¼ 1

2
lim
!!1Sð!Þ: (16)

Measurement of noise spectrum.—Using the approxi-
mate relation (14) we evaluate the noise spectrum as
follows. For a fixed value of 2� (interpulse time), we
evaluate TL

2 by applying a sufficiently large number of
pulses and measuring the asymptotic behavior of the
coherence. We repeat this procedure for other fixed values
of 2�. Then, by plotting 1=TL

2 against �=2�, we obtain S as
a function of !.
Better evaluation of the spectrum is possible by using

the precise relation (13). For example, a functional form
Sfitð!Þ of the noise spectrum (which includes some fitting
parameters) based on the above approximate evaluation is
phenomenologically introduced. Then we create a function
Fð�=2�Þ similar to that on the right-hand side of Eq. (13)
by summing the phenomenological function Sfit up to an
appropriate cutoff L (L * 10 would be sufficient):

Fð�=2�Þ ¼ 4

�2

XL

l¼0

1

ð2lþ 1Þ2 S
fitðð2lþ 1Þ�=2�Þ: (17)

We finally fit Fð�=2�Þ to the experimental results (1=TL
2 vs

�=2�) to obtain the values of the parameters for Sfit.
Finally, we estimate the frequency range for this method

of noise measurement. To measure experimentally the
asymptotic behavior of the coherence, we should apply a
large number of pulses before the amplitude becomes too
small to detect. Hence, the interpulse time 2� must be
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smaller than the 1=e decay time T2 of the coherence (in the
presence of the SE pulse sequence). This implies that the
lower bound on the frequency �=2� should be �=T2.
The upper bound is determined by the shortest interpulse
time that is experimentally available. The value of this time
can be of the same order as that of the pulse duration
time �p. Hence, the upper bound on the frequency �=2�

should be �=�p.

Concluding remarks.—In summary, we have described a
method for obtaining the dephasing noise spectrum. The
method is simple in the sense that we have only to apply
sequences of equidistant � pulses to the qubit (spin). The
generalized coherence time, evaluated from the asymptotic
exponential decay of the coherence in the presence of a
sufficiently large number of pulses, is used for evaluating
the spectrum. This method is applicable to a system inter-
acting with several independent noise sources. In this case,
the total spectrum is the sum of the individual noise spectra.

This method is expected to be valid in a wide range of
systems because we have derived it for three models. The
single-qubit noise spectrum plays an important role even in
multiqubit systems because it significantly contributes to
the dynamics of the systems (this is clearly seen when
analyzing with the quantum master equation). Extension
of the present study remains a theoretical task. We should
analyze a model in which the system-environment coupling
is given in a general form and/or in which there are both
energy and phase relaxations. The projection operator for-
malism [31] would be helpful in analyzing a general model.

This method should provide new insights into NMR
experiments in condensed matter physics. So far the lon-
gitudinal relaxation time T1 has been successfully used for
investigating properties of electrons and nuclear spins in
condensed matter. The method presented here should en-
able the use of the generalized coherence time TL

2 for
investigating (other) properties of them. This is because
the noise spectrum (evaluated from TL

2 ) includes informa-
tion on the environment, the physical origin of which is
electrons, other nuclear spins, and so on. In order to make
this application useful, it is important to capture the char-
acteristic structure of the spectrum by analyzing micro-
scopic models that include interactions with nuclear spins
(e.g., Fermi contact hyperfine and dipolar couplings). An
experimental demonstration of the present method in NMR
will be reported elsewhere [32].
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