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We present a general, systematic, and efficient method for decomposing any given exponential operator

of bosonic mode operators, describing an arbitrary multimode Hamiltonian evolution, into a set of

universal unitary gates. Although our approach is mainly oriented towards continuous-variable quantum

computation, it may be used more generally whenever quantum states are to be transformed deterministi-

cally, e.g., in quantum control, discrete-variable quantum computation, or Hamiltonian simulation. We

illustrate our scheme by presenting decompositions for various nonlinear Hamiltonians including quartic

Kerr interactions. Finally, we conclude with two potential experiments utilizing offline-prepared optical

cubic states and homodyne detections, in which quantum information is processed optically or in an

atomic memory using quadratic light-atom interactions.
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Introduction.—Since the proposal of quantum computa-
tion as a generalization of computer science, an important
theoretical challenge has been how to decompose an arbi-
trary gate into a universal set. The corresponding theory of
discrete-variable decompositions is very extensive and
mostly employs matrix representations of logic gates uti-
lizing matrix decomposition techniques [1]. In contrast to
discrete-variable theory, there is no established method to
decompose an arbitrary operator in the continuous-variable
(CV) regime except the proof-of-principle results on uni-
versal gate sets in Refs. [2,3]. In particular, Ref. [2] makes
use of an exponential operator approximation and proves
that by employing certain elementary gate sets (discussed
below) one can derive any operator up to a certain error.
However, none of these works intend to present a construc-
tive and efficient decomposition recipe.

The problem of decomposition is intrinsically related to
the concept of universality. Universality means having a set
of operators that allows you to simulate any operator on a
certain Hilbert space through concatenations of the ele-
ments of the universal set. For our purpose, achieving
universality is then equivalent to decomposing, at least
approximately, an arbitrary unitary exponential operator
to a set of elementary unitary exponential operators:

eitHða;ayÞ ¼ feit1H1ða;ayÞ; eit2H2ða;ayÞ; . . . ; eitNHNða;ayÞg:
Here, a and ay are annihilation and creation operators,
respectively, and fHng are fixed Hermitian functions of
mode operators. The coefficients t1, t2; . . . are interaction
times of the Hamiltonians and are functions of t. Thus,
different concatenations of elements of this set for varying
interaction times should enable one to simulate an arbitrary
operator. We assume that we have access to arbitrary
interaction times for the initial set.

In our setting, there are two important criteria for CV
gate decompositions: how systematic and how efficient the

decompositions are. Here we shall derive methods accord-
ing to these criteria and present a systematic and efficient
framework for decomposing any given unitary operator
that acts on bosonic modes into a universal set of elemen-
tary CV gates. Our general method consists of first ex-
pressing operators in terms of linear combinations of
commutation operators and then realizing each commuta-
tion operator and their combinations through approxima-
tions. We will discuss the efficiency of the decompositions
and present guidelines to obtain an arbitrary order of error.
For this purpose, we employ a powerful technique for
obtaining efficient approximations (see supplemental
material for details [4]). Throughout, we use the conven-
tion @ ¼ 1=2, i.e., the fundamental commutation relation is
½X; P� ¼ i=2 with X � ðay þ aÞ=2 and P � iðay � aÞ=2.
General Gaussian decompositions.—For Gaussian op-

erators, i.e., second-order operators, exact and finite de-
compositions to elementary sets are known (here, order is
defined as the polynomial order of the mode operators in
the Hamiltonian of a given operator). For example, the
Bloch-Messiah decomposition allows you to decompose
any second-order operator, i.e., any unitary Gaussian op-
eration, to passive linear multimode optics, single-mode
squeezing, and displacement operations [5].
In Ref. [3] the following set is presented as a single-

mode Gaussian universal set: feið�=2ÞðX2þP2Þ; eit1X; eit2X2g,
and in Ref. [6], similar to the Bloch-Messiah decomposi-
tion, a recipe is given to decompose any single-mode
transformation of second order to this set with no more
than four steps. These exact decompositions emerge from
the fact that mode transformations through second-order
unitary operations are linear, and thus, one can utilize
matrix representations and matrix decomposition tech-
niques. In fact, for Gaussian operator decompositions,
one can find infinitely many elementary sets and
decompositions, and instead of those sets above, one may
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choose the one that suits best the given situation and
purpose.

Universal decompositions.–In order to decompose an
arbitrary single-mode operator in CV systems, it has
been shown that, in principle, adding a nonlinear element
(of order three or more) to the toolbox is sufficient [2]. In
the present work we use the following set:

feið�=2ÞðX2þP2Þ; eit1X; eit2X2
; eit3X

3g: (1)

This set is not unique, and one may use different Gaussian
elements as explained above and a different nonlinear
element. However, this particular set turns out to be useful
for describing CV quantum computation in the one-way
model using CV cluster states [7,8]. Note that one can
simplify this elementary set further by omitting the

second-order Hamiltonian, since eit
2X2 ¼ eið2t4=27Þ

eið2t=3ÞPeitX3
e�ið2t=3ÞPe�itX3

eiðt3=3ÞX, and using the Fourier
transformation whose action is given in Eq. (2). Even
though this simplification has value from an academic
point of view, as it reduces the minimal number of elemen-
tary gates, we are basically motivated by decomposing an
arbitrary gate to a set of experimentally accessible gates.
All second-order gates are relatively easy to implement and
replacing them by third-order Hamiltonians will increase
the complexity of the gate sequence. Therefore we shall
use the overcomplete set (1) in our decompositions without
loss of generality. One may also prefer a further extended
set depending on a certain experimental situation in order
to reduce the complexity of the decompositions.

In addition, one can obtain some nonlinear opera-

tions through unitary conjugation: UeitHða;ayÞUy !
eitHðUaUy;ðUaUyÞyÞ. An important unitary conjugation is the
Fourier transform:

eið�=2ÞðX2þP2ÞeitXm
e�ið�=2ÞðX2þP2Þ ¼ eitP

m
: (2)

Employing unitary conjugation, with the set (1), one can
now generate certain nonlinear gates exactly. For example,

eitX
3
eitP

2
e�itX3 ¼ eitðP�tð3=2ÞX2Þ2 , which is a fourth-order

operator. However, there is only a limited number of
such decomposable nonlinear operators, and therefore,
for generality, we will make use of the idea of operator
approximations.

Besides the abstract notion of universality [2] how can a
given unitary exponential operator be decomposed to the
elementary set (1) in a systematic and efficient way? Let us
first introduce the available toolbox employed to achieve a
decomposition as efficient as possible (while efficiency
will be defined and discussed later). The tools we use for
CV gate decompositions include Gaussian operator de-
compositions, unitary conjugation, and exponential opera-
tor relations as well as approximations. Before proceeding
to the general case, let us demonstrate how to realize a
particular nonlinear exponential operator using the above
tools and the set (1). A very important example is the Kerr
interaction operator. It allows you to convert a coherent

state into a cat state [9] and to realize a controlled quantum
gate for qubits [10]. The one-mode self-Kerr interaction,

up to a Gaussian element, corresponds to eitðX2þP2Þ2 ¼
eitðX4þX2P2þP2X2þP4Þ. In order to decompose the Kerr op-
eration to the set (1), we would first write the full Kerr
Hamiltonian as a linear combination of commutators and
then realize each through operator approximations. The
following relations, together with the Fourier transform
(2), are enough to realize this gate up to a phase: X4 ¼
� 2

9 ½X3; ½X3; P2��, X2P2 þ P2X2 ¼ � 4i
9 ½X3; P3�. Thus, it

is sufficient to realize the above commutators and their
linear combinations (see supplemental material [4] for
more details).
Let us now present the general scheme for an arbitrary

Hamiltonian. Obviously, any single-mode Hamiltonian, as
a polynomial of bosonic mode operators, consists of op-
erators of the form cXmPn þ c�PnXm. We can show that
any such operator can be written as a linear combination
of commutation operators. First note that cXmPn þ
c�PnXm ¼ ReðcÞðXmPn þ PnXmÞ þ i ImðcÞ½Xm; Pn�, and
then one can derive the following two identities (see sup-
plemental material [4] for a derivation),

Xm ¼ �2

3ðm� 1Þ ½X
m�1; ½X3; P2��; (3)

XmPn þ PnXm ¼ � 4i

ðnþ 1Þðmþ 1Þ ½X
mþ1; Pnþ1�

� 1

nþ 1

Xn�1

k¼1

½Pn�k; ½Xm;Pk��: (4)

Equation (3) is necessary to obtain arbitrary powers of X
and P operators with the Fourier conjugation (2), and
Eq. (4) basically prescribes how to systematically decom-
pose an elementary Hamiltonian to commutation opera-
tions of orders of X and P and their combinations where we
can use the tools we have.
For multimode operators one needs an extended elemen-

tary set including an entangling operation [2], for example,
in the optical context it can be the beam-splitter operation.
Using Gaussian decomposition methods, for simplicity, we
may assume that we have access to the following gate
without loss of generality, CZ ¼ e2itX1�X2 . For multimode
Hamiltonians we can again use the simplifications for a
single mode and Eq. (4), because of the fact that the
operators on one mode commute with the operators on
the other mode. However, for this purpose, we initially
need to realize the two-mode operations with arbitrary
powers of X and P in both modes, similar to the single-
mode relation (3). The following relation together with
Fourier conjugation (2) and Eq. (3), is sufficient to realize
the two-mode operations with arbitrary powers of X and P,
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Pn
1 � Ps

2 ¼ � 1

ðnþ 1Þðsþ 1Þ ½P
sþ1
2 ; ½Pnþ1

1 ; X1 � X2��:
(5)

Then, we can use Eq. (4) again with the single-mode
operations to realize an arbitrary two-mode expression.
As an example, consider the cross-Kerr Hamiltonian (up
to a Gaussian transformation): ðX2 þ P2Þ1 � ðX2 þ P2Þ2 ¼
X2
1 � X2

2 þ X2
1 � P2

2 þ P2
1 � X2

2 þ P2
1 � P2

2. In this case,
the nested commutator [P3

2, [P
3
1, X1 � X2]] will suffice.

Another, even simpler example for decomposing a non-
linear two-mode evolution, namely, cubic parametric
down-conversion with a quantized pump, is discussed in
the supplemental material [4]. In form of a dispersive
interaction, it may also be used to mimic a Kerr gate [11].

From an academic perspective, Eqs. (3)–(5) are univer-
sal not only for any Hamiltonian, but also for any initial
universal set with a nonlinear gate different from X3 be-
cause of the well-known equations: @F

@P ¼ �2i½X; F�, @F@X ¼
2i½P;F�, where F is a function of operators X and P. Thus,
any initial nonlinear Hamiltonian can be reduced to a form
Xm. From a practical perspective, however, it is unwise to
use Eqs. (3) and (4) for arbitrary initial sets because of a
typical increase of complexity. Instead, one should derive
an optimized expression (in terms of the decomposition
efficiency, see below) utilizing the available tools for every
other Hamiltonian and every other universal set.

Efficiency.—Besides having a systematic method, we
also require the decompositions to be relatively efficient.
We define efficiency as the number of operators needed to
realize, in an approximate fashion, a given operator with a
certain negligible error (note that this definition slightly
differs from previous ones [2] where efficiency is the
scaling of the number of operators with respect to the
error). Let us give a few more definitions. If in

etC ¼ et1Aet2Bet3A . . . etMB; (6)

the Taylor expansion of both sides matches for the orders
of t up to tm, it is called mth-order decomposition [12]. For
example, an important case is when C ¼ Aþ B for which
we will use the term splitting. Another important case is
when C ¼ ½A; B� which, from now on, we call commuta-
tion operator. For example, the identity below is a well-
known second-order approximation for a commutation
operator. It has been used already in quantum control
[13], discrete-variable quantum computation [14], CV
quantum computation [2], or, in general, Hamiltonian
simulation theory [15],

et
2½A;B� ¼ eitBeitAe�itBe�itA þ fðt3; A; BÞ þ . . . (7)

It basically says that, for t < 1, the corresponding operator
concatenation is the same as applying the commutation
operator of A and B, up to some error where the dominant
term is of the order t3. Now in order to obtain more reliable
gates, a straightforward and common way to improve

accuracy is using smaller interaction times, t ! t=n, and
applying the decomposition n2 times to obtain the same
interaction time as before,

et
2½A;B� ¼ ðeiBðt=nÞeiAðt=nÞe�iBðt=nÞe�iAðt=nÞÞn2 þ f

�
t3

n
; A; B

�
:

Let us call this approach rescaling ([16] and Refs. therein).
Besides improving accuracy, rescaling is absolutely
necessary to realize nested commutations. For example,
one may replace itA by t2½B;A� in Eq. (7) to simulate

the nested commutation operator eit
3½B;½B;A�� ¼

eitBet
2½B;A�e�itBe�t2½B;A� þ f0ðt4; A; BÞ, and similarly for

further nested commutations. However, in this identity,
an approximation of [B, A] is still needed and eventually,
using again Eq. (7), we obtain an operator whose interac-
tion time is of the same order as the dominant error term. In
order to obtain a reasonable decomposition, the order of
the dominant error should be smaller than t3. Thus, again
rescaling is needed, requiring relatively many operators to
enhance accuracy. For instance, using the approximations
described so far, the number of operators to approximate a
single commutation operator with coefficient 0.1 and
dominant error term�10�3 requires 4000 operators, while
for the nested commutation operator, with the same values,
the number of operators will be �1010 (see supplemental
material [4]). Hence, better approximations are crucial to
achieve reasonable decompositions.
What we propose to use is a general and powerful

method for obtaining higher-order approximations in a
direct fashion (details on this rather technical part of our
proposal can be found in the supplemental material [4]; see
also, for instance, page 393 of Ref. [17]). In this approach,
concatenations converge much faster to an arbitrary set of
commutations and linear combinations of these, reducing
the number of operators from the order of 1010 to the order
of tens.
Experiment.—An immediate consequence of our work is

that it bridges the originally huge gap between abstract
notions of CV decomposition theory and possible experi-
mental implementations, for instance, within quantum op-
tics. Highly nonlinear quantum gates (such as quartic Kerr
gates) may then be realized in a deterministic fashion by
concatenating tens of quadratic and cubic gates. Figure 1
illustrates two experimental schemes. They both combine
ideas for conditional optical state preparation, in order to
probabilistically prepare and distill high-fidelity cubic

phase states � R
dxeitx

3 jxi [18–20], with those for tempo-
rally encoded [21,22] and fully homodyne-detection-based
[23] CV cluster computation. The complication of realiz-
ing nonlinear gates is shifted offline into the preparation of
the cubic ancillae.
In Fig. 1(a), the conditional state preparer (CSP) is

linked with a quantum memory (QM) through a classical
channel in order to signal whenever an offline state is
available such that an optical pulse carrying the latest
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quantum information is released from the quantum mem-
ory. After the first application of the optical CZ gate
between a first input pulse coming from the left and a first
ancilla pulse coming from the top (emerging from the
CSP), the CZ-transformed input pulse is measured through
homodyne detection (HD), while the CZ-transformed an-
cilla pulse is sent to the quantum memory with its quantum
state transferred onto the memory. After preparation of the
next ancilla pulse, a new input pulse emerges from the
memory for a second application of the CZ gate and so on.
This is similar to the scheme of Ref. [21] for a single
quantum wire (corresponding to a linear CV cluster chain),
but this time including cubic states and quantummemories,
and excluding nonlinear measurements such as photon
counting (except for the CSP). Note that storage of non-
classical states has been already demonstrated experimen-
tally [24,25].

The scheme in Fig. 1(b) uses an atomic ensemble and a
quadratic light-matter interaction [26]. The light-matter
interaction is always delayed until an appropriate offline
state is available. Quantum information can be stored and
processed at the same time within the ensemble [22] by
swapping the optical and atomic states after every interac-
tion, simply using additional quadratic interactions
[27,28]. As opposed to Refs. [21,22], the optical state is
either a squeezed vacuum or a conditionally prepared cubic
state, inserted into the temporal cluster chain whenever
needed [23]. Thus, we make explicit use of the atomic
memory to compensate for the probabilistic optical ancilla-
state preparations. Only with these cubic ancillae is it
possible to perform universal gates solely through
homodyne detection [23]. In principle, our decomposi-
tion method would then determine what homodyne

local-oscillator angles to choose in order to realize a given
Hamiltonian in a deterministic fashion. Currently available
squeezing levels of almost 13 dB are, in principle, suffi-
cient to perform up to 73 elementary teleportations in a
nonclassical fashion; four such elementary Gaussian gates
have been implemented already in a fully optical, spatial
encoding using 5.5 dB-squeezed light sources [29].
In summary, we proposed a systematic framework to

decompose arbitrary CV unitaries (from arbitrary multi-
mode Hamiltonians) into an experimentally realizable
elementary gate set. Different from previous proof-of-
principle demonstrations, our treatment brings the abstract
notions of decomposition theory for CV quantum compu-
tation close to experimental implementations.
We acknowledge support from the Emmy Noether

Program of the DFG in Germany and thank Nick
Menicucci and Akira Furusawa for useful discussions.

*seckin.sefi@mpl.mpg.de
†peter.vanloock@mpl.mpg.de

[1] M.A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,

Cambridge, England, 2000).
[2] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784

(1999).
[3] S. D. Bartlett et al., Phys. Rev. Lett. 88, 097904 (2002).
[4] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.107.170501 for
details.

[5] S. L. Braunstein, Phys. Rev. A 71, 55801 (2005).
[6] R. Ukai et al., Phys. Rev. A 81, 32315 (2010).
[7] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188

(2001).
[8] N. C. Menicucci et al., Phys. Rev. Lett. 97, 110501 (2006).
[9] B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).
[10] I. L. Chuang and Y. Yamamoto, Phys. Rev. A 52, 3489

(1995).
[11] A. B. Klimov, L. L. Sánches-Soto, and J. Delgado, Opt.

Commun. 191, 419 (2001).
[12] The approximation quality does not only depend on the

decomposition order, but also on the actual values of the

gate interaction times and the norms of the corresponding
operators. In the present work, the focus is on the decom-
position order, omitting the absolute errors.

[13] J. Clark, D. Lucarelli, and T. Tarn, Int. J. Mod. Phys. B 17,
5397 (2003).

[14] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).
[15] K. Brown, W. Munro, and V. Kendon, Entropy 12, 2268

(2010).
[16] M. Suzuki, Phys. Lett. A 146, 319 (1990).
[17] R. I. McLachlan and R.W. Quispel, Acta Numer. 11, 341

(2002).
[18] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64,

012310 (2001).
[19] S. Ghose and B. C. Sanders, J. Mod. Opt. 54, 855 (2007).
[20] P. Marek, R. Filip, and A. Furusawa, arXiv:1105.4950.

(a)

(b)

FIG. 1. Concatenating elementary gates using offline condi-
tional state preparation (CSP) of squeezed and cubic states, a
quantum memory (QM), an optical CZ gate, e2itX1�X2 , and
homodyne detection (HD); solid lines represent the optical paths.
In (a), an optical quantum state is released from the QM only
when the CSP succeeds (dotted line is classical feedforward). In
(b), quantum information storage and processing go hand in
hand by employing suitable quadratic light-matter interactions
between optical pulses and an atomic ensemble.

PRL 107, 170501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 OCTOBER 2011

170501-4

http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.88.097904
http://link.aps.org/supplemental/10.1103/PhysRevLett.107.170501
http://link.aps.org/supplemental/10.1103/PhysRevLett.107.170501
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.81.032315
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.57.13
http://dx.doi.org/10.1103/PhysRevA.52.3489
http://dx.doi.org/10.1103/PhysRevA.52.3489
http://dx.doi.org/10.1016/S0030-4018(01)01139-7
http://dx.doi.org/10.1016/S0030-4018(01)01139-7
http://dx.doi.org/10.1142/S021797920302051X
http://dx.doi.org/10.1142/S021797920302051X
http://dx.doi.org/10.1103/PhysRevLett.75.346
http://dx.doi.org/10.3390/e12112268
http://dx.doi.org/10.3390/e12112268
http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1017/S0962492902000053
http://dx.doi.org/10.1017/S0962492902000053
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1080/09500340601101575
http://arXiv.org/abs/1105.4950


[21] N. C. Menicucci, X. Ma, and T. C. Ralph, Phys. Rev. Lett.
104, 250503 (2010).

[22] A. J. Roncaglia et al., Phys. Rev. A 83, 062332 (2011).
[23] M. Gu et al., Phys. Rev. A 79, 062318 (2009).
[24] M.D. Eisaman et al., Nature (London) 438, 837

(2005).

[25] T. Chaneliere et al., Nature (London) 438, 833 (2005).
[26] B. Julsgaard et al., Nature (London) 432, 482 (2004).
[27] J. Fiurás̆ek, Phys. Rev. A 68, 022304 (2003).
[28] Z. Kurucz and M. Fleischhauer, Phys. Rev. A 78, 023805

(2008).
[29] R. Ukai et al., Phys. Rev. Lett. 106, 240504 (2011).

PRL 107, 170501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 OCTOBER 2011

170501-5

http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevA.83.062332
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nature04315
http://dx.doi.org/10.1038/nature03064
http://dx.doi.org/10.1103/PhysRevA.68.022304
http://dx.doi.org/10.1103/PhysRevA.78.023805
http://dx.doi.org/10.1103/PhysRevA.78.023805
http://dx.doi.org/10.1103/PhysRevLett.106.240504

