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We provide a general framework of utilizing the no-signaling principle in derivation of the guessing

probability in the minimum-error quantum state discrimination. We show that, remarkably, the guessing

probability can be determined by the no-signaling principle. This is shown by proving that, in the

semidefinite programing for the discrimination, the optimality condition corresponds to the constraint that

quantum theory cannot be used for a superluminal communication. Finally, a general bound to the

guessing probability is presented in a closed form.
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To find and characterize the capabilities of quantum
systems in their applications to information processing
often leads to optimization problems which are in general
considered to be difficult. Nevertheless, any optimal per-
formance to be obtained at the end should satisfy the
fundamental principles that quantum theory fulfills,
although it is neither known nor clear if they are tightly
related one another, e.g., see Ref. [1]. Fundamental prin-
ciples can be found to be a useful tool to derive limitations
on optimal quantum performance in such a way that a
performance that is too good would be contradictory.

It turns out that the no-signaling principle, one of the
most conservative assumptions in physics, can be used to
characterize correlations that are not allowed among par-
ties sharing physical systems [1,2]. Assuming quantum
systems are shared, consequently, it follows that local
operations such as quantum cloning or quantum state
discrimination (QSD) cannot work arbitrarily well, since
the no-signaling constraint would be violated. This has
been considered in specific cases to derive only bounds
to optimal quantum performances, e.g., [3,4]. In particular,
QSD is of both fundamental and practical importance in a
wide range of quantum information applications [5]. It is
not only related to fundamental results, such as no cloning,
no signaling, and nonlocality in quantum mechanics
[3,4,6], but it is also applied to quantum communication
or signal processing, e.g., Ref. [5].

In this work, we provide a general framework of utiliz-
ing the no-signaling principle in the derivation of optimal
QSD, in such a way that if QSD works better than some
threshold (in terms of the guessing probability, or the mini-
mum error), superluminal communication would follow.
We show that, remarkably, the obtained threshold actually
coincides to that of the optimal QSD. This is shown by
proving that the optimality condition in a mathematical
formulation for optimal QSD, which will be introduced in
the semidefinite programing later, corresponds to those in
QSD constrained by the no-signaling principle. Hence, the

no-signaling constraint turns out to be the physical princi-
ple that dictates the optimal performance in discriminating
among quantum states. A general and computable bound to
optimal QSD is then provided in a closed form. The result
also strengthens relations among fundamental no-go theo-
rems in Refs. [3,4,6].
Let us begin by fixing notations. Throughout the Letter,

fqx; �xgNx¼1 denotes the situation that a quantum state

�x is generated with an a priori probability qx, whereP
xqx ¼ 1. Measuring quantum systems is described

by positive-operator-valued-measure (POVM) fMxgNx¼1,
where (i) Mx � 0 for all x, and (ii)

P
xMx ¼ I. Then, the

minimum-error QSD among fqx; �xgNx¼1 defines an optimi-

zation problem over POVMs such that the error is mini-
mized or equivalently the guessing probability, i.e., the
probability of making a correct guess, is maximized. We
write PðxjyÞ the probability that measurement Mx is
‘‘clicked’’ when a quantum state �y is actually given. The

probability measure for quantum states is given by the
Born rule, PðxjyÞ ¼ tr½�yMx�, known as Gleason’s

theorem [7].
The guessing probability denotes the maximum proba-

bility of correctly guessing,

Pguess ¼
XN
x¼1

qxPðxjxÞ ¼ max
fMxgNx¼1

XN
x¼1

qxtr½�xMx�: (1)

For the simplest case of two-state discrimination
fqx; �xgN¼2

x¼1 , the optimal one is known as the Helstrom

bound denoted by PðHÞ
guess as follows:

PðHÞ
guess ¼ 1

2ð1þ k q1�1 � q2�2 kÞ: (2)

For more than two quantum states, the guessing probability
is known only in restricted cases, for instance, geometri-
cally uniform states [8].
We now approach to the QSD problem with a funda-

mental constraint, the no-signaling principle, that should
be fulfilled in any information processing by quantum
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systems. The main idea is to incorporate the QSD problem
to a communication scenario between two parties, Alice
and Bob who attempt to communicate by making only use
of shared quantum states and measurement. Then, the
optimal performance of local operations and local mea-
surements can be limited by the no-signaling constraint.

Let us consider the following communication protocol,
where two parties share copies of a quantum state jc iAB.
Suppose that Alice encodes a message x 2 f1; . . . ; Ng into
the application of one of POVMs, MðA;xÞ ¼ fMðA;xÞ

y ;

y ¼ 1; . . .g, in which MðA;xÞ is complete, i.e.,
P

yM
ðA;xÞ
y ¼

I for each x ¼ 1; . . . ; N. For instance, the message x is

encoded in the application of the complete POVM MðA;xÞ.
The resulting state in the Bob’s side is one of those states,

�ðxÞ
y ¼ ðpðxÞ

y Þ�1trAjc iABhc jðMðA;xÞ
y � IÞ with probability

pðxÞ
y ¼ hc jðMðA;xÞ

y � IÞjc i. Given that the measurement
outcome is not announced, Bob only knows his system is

in �ðxÞ
y with probability pðxÞ

y , that is, described by a mixed

state, �ðxÞ
B ¼ P

yp
ðxÞ
y �ðxÞ

y . For another message x0 corres-
ponding to the application of MðA;x0Þ, Bob’s system results

in the state �ðx0Þ
B , which is equal to �ðxÞ

B while they are in
different mixtures. In fact, using an appropriate POVM,
Alice can prepare any quantum states on Bob’s side, i.e.,
any state decomposition in the Bob’s ensemble. This is
known as the Gisin-Hughston-Jozsa-Wootters (GHJW)
theorem [9]. Since they are identical quantum states, Bob
can never learn about the POVM Alice has applied, and
consequently, no message is allowed to be transferred in
this way.

Now, let PDðxjx0Þ denote the probability that Bob’s
detector gives an answer x when Alice has applied mea-

surementMðA;x0Þ. Note the normalization condition that for
each x0, it holds that

P
xPDðxjx0Þ ¼ 1. We also note that

Bob’s device for the discrimination is not specified, but
only its input-output relation. This can be thought of as a
black box scenario.

It is clear that if the no-signaling constraint is to be
fulfilled, the input-output relation cannot be given arbi-
trarily. Suppose that

P
xPDðxjxÞ> 1, meaning thatP

x½PDðxjxÞ � PDðxjx0Þ�> 0 for some x0 � x, from which
there would be at least a single x such that PDðxjxÞ>
PDðxjx0Þ. This immediately implies that PD is not non-
signaling [6] since superluminal communication can be
constructed in the following way: if Alice applies two

POVMs MðA;xÞ and MðA;x0Þ to encode 0 and 1, respectively,
Bob finds from his detector how frequently the outcome x
appears and then concludes if Alice’s encoding is 0 or 1.
Therefore, from the no-signaling constraint, we have

X
x

PDðxjxÞ � 1; (3)

on the Bob’s detector for the discrimination.
We now relate QSD of fqx; �xgNx¼1 to the communication

in the above. The key idea is to consider the case that one of

the POVM elements in the set MðA;xÞ, say, the first element

MðA;xÞ
1 , prepares state �x on the Bob’s side with probability

px, and the rest I�P
y�1M

ðA;xÞ
y does a state �x,

�ðxÞ
B ¼ px�x þ ð1� pxÞ�x; for x ¼ 1; . . . ; N: (4)

The reader is reminded that this is always possible from the
GHJW theorem [9]. If QSD among f�xgNx¼1 works too well,

Eq. (3) would be violated, meaning that the no-signaling
constraint is not fulfilled. In this way, the no-signaling
principle can constrain the guessing probability for QSD
among f�xgNx¼1.
In what follows, we derive a threshold of the guessing

probability in QSD among f�xgNx¼1 in such a way that

the no-signaling principle is not violated. From Eq. (4),
it follows that pxPðxjxÞ � PDðxjxÞ since, for Alice’s

measurement MðA;xÞ, the probability that Bob’s detector
answers x consists of contributions both by the state �x

with probability px and the rest from state �x. Then, the
no-signaling constraint in Eq. (3) leads to the following
bound:

X
x

pxPðxjxÞ � 1: (5)

Recall that Bob’s measurement device for the discrimina-
tion is not specified, but only its input-output relation—like
a black box scenario. Note also that the probability mea-
sure, Born rule, is not applied yet. The bound in Eq. (5) is
only the condition that the guessing probabilities PðxjxÞ do
not lead to superluminal communication. The following
are assumed, so far: (a) bipartite quantum states, (b) the
Born rule to the Alice’s system, and (c) the no-signaling
principle between the two parties.
In fact, in the above scenario, the bound obtained in

Eq. (5) corresponds to QSD among fqx; �xgNx¼1 where

qx ¼ pxP
N
x0¼1

px0
: (6)

This is because Bob’s device aims at discriminating among
f�xgNx¼1, and the a priori probability that state �x appears
from f�xgNx¼1 can be found as qx in the above. Having

collected all these, it is straightforward to derive the
main result.
Proposition.—From the no-signaling principle, the

guessing probability in QSD among fqx; �xgNx¼1 must be
bounded as follows:

Pguess ¼
X
x

qxPðxjxÞ � 1P
x
px

; (7)

where fpxgNx¼1 are from the identical ensembles in Eq. (4)
with the relation in Eq. (6). The equality holds when the
equality in Eq. (5) holds for all x ¼ 1; . . . ; N.
The equality in Eq. (5) means that Bob’s measure-

ment device works in a way that for each ensemble �ðxÞ
B
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[see Eq. (4)], the measurement device responds only to
f�xgNx¼1 but not f�xgNx¼1. Therefore, the condition that the
equality in Eq. (7) holds is the existence of identical
ensembles in Eq. (4) such that the measurement device
only responds to those states f�xgNx¼1 but not f�xgNx¼1.

Taking the measurement postulate in quantum theory into
account [see Eq. (1)], the condition of the equality in
Eq. (7) means the existence of POVM fMxgNx¼1 and
f�xgNx¼1 such that, for all x ¼ 1; . . . ; N,

X
x

pxtr½�xMx�¼1; or equivalently; tr½�xMx�¼0: (8)

When each state �x satisfies the condition in the above
with respect to POVM fMxgNx¼1, we call it complementary

to �x. This defines the relation between �x and �x in the
ensemble in Eq. (4) for the inequality in Eq. (7) to be
saturated.

To summarize what we have shown so far, a general
framework for utilizing the no-signaling principle in QSD
among fqx; �xgNx¼1 is presented, and a general bound is also

obtained in Eq. (7). The equality also holds if comple-
mentary states f�xgNx¼1 exist for given states f�xgNx¼1 to be
discriminated among, i.e., (i) the measurement device does
not respond to these states [see Eq. (8) under the assump-
tion of the Born rule], (ii) the identical ensembles in Eq. (4)
can be found fulfilling the relation between px and qx in
Eq. (6). Once the equality holds, it is also crucial to know if
(iii) the bound coincides to the guessing probability of
optimal QSD.

In the rest of the Letter, we answer to three questions
addressed in the above. Namely, we show that for any
optimal QSD, one can find identical ensembles in Eq. (4)
fulfilling (i), (ii), and (iii). This leads to the following
conclusion.

The guessing probability of optimal QSD can be deter-
mined by the no-signaling principle.

To proceed the proof, we consider the optimality condi-
tion of the semidefinite programing (SDP) for the guessing
probability of optimal QSD. In an SDP, an optimization
problem can be written in two forms, called primal and
dual, and each one is called feasible when variables sat-
isfying given constraints are not of an empty set [10].
When both problems are feasible, it follows that optimal
solutions exist and can be obtained by solving either form
of the problem.

There are so-called Karush-Kuhn-Tucker (KKT) condi-
tions which can also decide if an optimal solution exists in
an SDP problem. In fact, variables satisfying the KKT
conditions give an optimal solution of both primal and
dual problems. In summary, optimal solutions can be
obtained in either way: (i) solving KKT conditions or (ii)
solving either a primal or dual problem when both are
feasible. KKT conditions contain more parameters than
primal or dual problems, and are therefore considered not
to be easier to solve than to do a primal or dual problem.

We now show that the lists (i), (ii), and (iii) correspond
to the optimality condition, i.e., the KKT, of the SDP for
the guessing probability in optimal QSD.
Proof of the result.—Let us start by formulating the SDP

for the guessing probability of optimal QSD among
fqx; �xgNx¼1 as follows, what we call the primal problem,

maxfðfMxgNx¼1Þ ¼
X
x

qxtr½�xMx�

subject to Mx � 0;
X
x

Mx ¼ I; (9)

where POVM fMxgNx¼1 are called primal variables. The
Lagrangian can be constructed as

LðfMxgNx¼1; f�xgNx¼1;KÞ ¼ fðfMxgNx¼1Þ�
X
x

tr½�xMx�

þ tr

�
K

�X
x

Mx � I

��
; (10)

with non-negative operators f�xgNx¼1 and K called dual

variables. It is also straightforward to derive the dual
problem [10],

min tr½K�
subject to K � qx�x; 8 x ¼ 1; . . . ; N: (11)

It is clear that primal and dual problems are feasible, and
therefore optimal solutions exist and can be found by
solving either form of the problem.
The optimal solutions can also be obtained by solving

the KKT conditions, which are obtained from the
Lagrangian in Eq. (10):

tr ½�xMx� ¼ 0; (12)

and

K ¼ qx�x þ �x; 8 x ¼ 1; . . . ; N; (13)

and the constraints in Eqs. (9) and (11). Note that the
existence of optimal solutions is already guaranteed by
the fact that both the primal and the dual problems are
feasible.
We are now ready to show that, when the equality in

Eq. (7) is saturated, the guessing probability corresponds to
that of optimal QSD. First, the condition in Eq. (12) called
complementary slackness means that each optimal Mx is
orthogonal to dual variable �x. The existence of states
f�xgNx¼1 that satisfy the condition in Eq. (8) is therefore
shown. Second, the condition in Eq. (13) assures the ex-
istence of an identical ensemble that can be decomposed N
different ways such that each decomposition consists of
one of states f�xgNx¼1 and its corresponding complementary

state �x, as it is shown in Eq. (4). After the normalization
~K ¼ K=tr½K�, the identical ensembles ~K can be explicitly
seen,
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~K ¼ qx
tr½K��x þ 1

tr½K��x; 8 x ¼ 1; . . . ; N: (14)

Hence, the existence of an identical ensemble in Eq. (4)
together with complementary states f�xgNx¼1 is shown.

Finally, the reader is reminded that the solution of the
dual problem in Eq. (11) is given by tr½K�. The ensemble
in Eq. (14) has the state �x with probability qx=tr½K�,
which corresponds to px in Eq. (4). From the normalizationP

xqx ¼ 1, it follows that tr½K� ¼ 1=
P

xpx, which coin-
cides to the upper bound in Eq. (7) obtained by the no-
signaling constraint. Therefore, the bound in Eq. (7) is
shown to be indeed the guessing probability in optimal
QSD. j

A general bound to the guessing probability can be
derived using the condition of the identical ensemble in
Eq. (4): for all x, y,

k px�x � py�y k¼k ð1� pxÞ�x � ð1� pyÞ�y k : (15)

From this, one can compute the quantity,
P

xpx, in
Eq. (7). Here, we derive a very general bound from
the fact that in Eq. (15) the right-hand side is not larger
than 2� ðpx þ pyÞ, and the left-hand side is equal to

ðPzpzÞ k qx�x � qy�y k . As a result, we have

Pguess � 1

N

�
1þ 1

2

XN
x¼1

k qx�x � qxþ1�xþ1 k
�
;

where pNþ1 ¼ p1 and �Nþ1 ¼ �1. Although this bound is
in general not tight, in particular, when N exceeds to the
dimension of the Hilbert space supporting quantum states
f�xgNx¼1, the usefulness of this bound is especially worthy
of notice as no assumption is made on both the structure
among given quantum states and the a priori probabilities.
For two-state discrimination, this bound actually coincides
to the optimal one, Helstrom bound in Eq. (2).

To summarize, we have provided a general framework
of utilizing the no-signaling principle in QSD problems. It
is shown that the guessing probability in optimal QSD can
be determined by the no-signaling principle; i.e., the no-
signaling constraint is the physical principle that dictates
the optimal performance in QSD. We also highlight the
methodology employed, that the no-signaling principle is
related to the optimality condition (i.e., KKT) of the SDP
problem for QSD. This may envisage a usefulness of the
SDP in quantum optimization problems as a method of
characterizing physical principles that dictate optimal
quantum performances. In this way, the guessing probabil-
ity is obtained without resort to the measurement postulate
via the Born rule, as follows.

Recall the list, (a), (b), and (c), assumed when deriving
the guessing probability (with the equality) in Eq. (7). Note
that the measurement postulate on Bob’s quantum states
is not assumed. Probabilities saturating the equality in
Eq. (7) are actually obtained by imposing the no-signaling
constraint to Bob’s probabilities. Then, from SDP it is

shown that there always exist POVMs that attain Bob’s
probabilities from his states via the Born rule. This shows
that Gleason’s theorem for any set of quantum states
fqx; �xgNx¼1 is derived from the three assumptions. This is

in fact the converse of the recent result on the bipartite
Gleason correlations [11,12]: any nonsignaling correla-
tions between two systems for which local quantum
measurements are possible can also be obtained by mea-
surement on some bipartite quantum states. It would be
interesting to derive a general proof of the converse: by
assuming bipartite quantum states, local quantummeasure-
ment on Alice, and the no-signaling constraint between
two parties, can Gleason’s theorem for Bob’s local quan-
tum mechanics be derived?
The guessing probability is connected to the min-

entropy, through which the max-entropy quantifying the
so-called decoupling approach is also related [13]. Re-
cently, the connection of the guessing probability to quan-
tum nonlocality is shown via the no-signaling principle
[14]. It would be interesting to investigate further opera-
tional relations between these entropic quantities and
fundamental principles in physics.
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