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We study the Sz-conserving quantum spin Hall insulator in the presence of HubbardU from a field theory

point of view. The main findings are the following. (1) For arbitrarily smallU the edges possess power-law

correlated antiferromagnetic XY local moments. Gapless charge excitations arise from the Goldstone-

Wilczek mechanism. (2) Electron tunneling between opposite edges allows vortex instantons to proliferate

whenK, theXY stiffness constant, satisfies 4�Kþð4�KÞ�1<4. When the preceding inequality is violated,

the edge modes remain gapless despite the sample width being finite. (3) The phase transition from the

topological insulator to the largeU antiferromagnetic insulator is triggered by the condensation of magnetic

excitons. (4) In the large U antiferromagnetic insulating phase the magnetic vortices carry charges

proportional to the square magnitude of the antiferromagnetic order parameter.
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The subject of topological insulators (TI) has attracted
considerable attention recently [1]. A signature of this type
of band insulator is the presence of itinerant boundary
states in the bulk band gap [2–6]. Moreover, unlike those
in usual band insulators, these itinerant in-gap states
are robust against any modification of the free-electron
Hamiltonian so long as they (i) respect time-reversal sym-
metry, and (ii) do not close the bulk band gap. Because of
the robustness, these boundary states can evade Anderson’s
localization in the presence of (time-reversal invariant)
disorder [7]. At the present time noninteracting TIs are
fairly well understood. What remains open is the effect of
electron-electron interaction on TIs [8].

Recently, two independent Monte Carlo simulations
[9,10] were performed on the simplest kind of two dimen-
sional interacting TI. The Hamiltonian studied in these
works is H0 þHu where H0 is the Sz-conserving free-
electron model introduced by Kane and Mele [2]:

H0 ¼
X
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Here i, j label the sites of a honeycomb lattice, the first
term describes the nearest neighbor hopping, and the sec-
ond term is a spin-dependent second neighbor hopping.

Here �ij¼ðd̂1� d̂2Þz=jðd̂1� d̂2Þzj where d̂1 and d̂2 are unit
vectors along the two bonds the electron traverses when
hopping from j to i. Hu is given by Hu ¼ U

P
ini"n#.

According to Ref. [9], for t0 * 0:03 (see Fig. 1) there are
only two phases as a function ofU. The largeU phase is an
easy-plane (XY) antiferromagnetic (AF) Mott insulator; at
small U it is an (interacting) TI with gapless spin and
charge edge excitations.

The present work is motivated by the following con-
siderations. Consider a system with edges [Fig. 2(a)]. At
U¼0 the bulk has a band gap and the only low energy

excitations are the ‘‘helical’’ edge modes described by the
following Hamiltonian

HE0 ¼ �iv
Z

dx�þ�z@x�; (2)

where� applies to the top or bottom edges. In Eq. (2) v is
the edge velocity (which will be set to 1 in the rest of the
Letter), and � is a two component fermion field whose
first (second) component corresponds to spin up (down).
For small U the bulk is nonmagnetic [9,10] but the edge
will develop local moments. To see that we Hubbard-
Stratonavich decouple the Hubbard U term in the
imaginary-time Euclidean action as
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(3)

We note that upon time reversal S�j !�S�j and cþj�cj��!
�cþj��cj�, and hence, the decoupled action is time-reversal

invariant. (Note that the imaginary-time � transforms as it,
hence, is invariant under time reversal.) In mean-field

FIG. 1 (color online). A schematic reproduction of the phase
diagram of the H0 þHu reported in Ref. [9]. The vertical cut is
considered in the text.
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theory S� takes on space-time independent values (hence,
spontaneously break the time-reversal symmetry) which
introduce two mass terms into H0:

HE0 �Um

�
cos�0

Z
dx�y�x�þ sin�0

Z
dx�y�y�

�
:

(4)

Because the noninteracting theory has a logarithmically
diverging susceptibility with respect to these mass terms
mean-field theory predicts the edges will have long-range
AF XY order for arbitrarily small positive U. Of course,
such long-range order is destroyed by spin wave fluctua-
tions and the time-reversal symmetry is restored. The re-
sulting edges have power-law decaying AF XY correlation.
However, since the local moments introduce a single parti-
cle gap, one might wonder where are the gapless charge
excitations.

First, to make sure our statement concerning AF mo-
ment formation at infinitesimalU is correct for the edges of
a two dimensional TI, we perform a mean-field calculation
on a cylinder for t0 ¼ 0:2 and 0 � U � 5 (this corresponds
to the cut associated with the blue line interval in Fig. 1).
The results are shown in Fig. 3; from which it is clear that
while the order parameter deep in the bulk (the blue curve)
vanishes for U & 2:4, the edge order parameter (the red
curve) survives to the lowest U value. There are two types
of fluctuations above the mean-field vacuum: the massive
modulus fluctuation inm and the massless Goldstone mode
(i.e., spin wave) fluctuations. In the presence of these fluc-
tuations we need to replace Eq. (4) by the following action
SE ¼ R

dxd�LE:

LE ¼ ��@��� i�þ�z@x��U �m½cos�ðx; �Þ�y�x�

þ sin�ðx; �Þ�y�y�� þU½�mðx; �Þ2
� �mðx; �Þ�y�x��: (5)

In the followingwe first ignore the�m fluctuation and focus
on the effect of the spin waves. In Ref. [11] Goldstone
and Wilczek showed that integrating out the gapped
fermions in Eq. (5) in the presence of a background
electromagnetic gauge field and the total effective action
looks like

Seff ¼
Z

dxd�

�
K

2
ð@��Þ2 � ie

2�
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�
: (6)

Here e is the electron charge, and the last two terms are
the famous chiral anomaly. Using the method of Abanov
and Wiegmann [12] we have derived the stiffness term

K ¼ ðm2=2�ÞR�
0

pdp
ðp2þm2Þ2 ¼ ð1� m2

�2þm2Þ=4� (here � is a

momentum cutoff). Hence as �=m ! 1 K ! 1=4�.
So far in deriving K we have ignored the �m fluctuation.

The easiest way to account for these fluctuations is to
replace the fermion bilinears in Eq. (5) by their bosoniza-
tion formulas [13]:

L E¼ 1
2ð@��Þ2�U �mC�cos½�ðx;�Þ�

ffiffiffiffiffiffiffi
4�

p
�ðx;�Þ�

þU½�mðx;�Þ2��mðx;�ÞC�cosð
ffiffiffiffiffiffiffi
4�

p
�Þ�; (7)

whereC� is a cutoff dependent constant. Now it is straight-
forward to integrate out �m and �. The results are (i) the
generation of the term �R

dxd� cos2� which is irrelevant

for ð�KÞ�1 < 2, (ii) an orderU correction to K: K ! K þ
OðUÞ. Hence for large � and small U the effect of �m
fluctuations is to make Eq. (6) the action of a repulsive
Luttinger liquid [14].

FIG. 2 (color online). (a) The spin Hall insulator defined on a
cylinder with height h. The thick and thin bonds denote the
nearest and second neighbor hopping. (b) When the cylinder is
short, the electron can directly tunnel from one edge to the other.

FIG. 3 (color online). (a) The mean-field antiferromagnetic
XY order parameter as a function of z [see Fig. 2(a) and U].
The calculation is done for a cylinder with 35 unit cells in the
periodic direction and 40 unit cells in the z direction. The value t0
is 0.2. (b) The order parameter as a function ofU deep in the bulk
z ¼ 20 (lower curve), and at the edge z ¼ 1 or 40 (upper curve).
It is clear that while the order parameter in the bulk vanishes for
U & 3 (the small rounding is due to finite size effect), the edge
order parameter survives to the lowest U value.
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In the absence of A�, Eq. (6) implies the XY correlation

function

hei�ð0;0Þe�i�ðx;�Þi � ðx2 þ �2Þ�1=4�K; (8)

hence, as claimed earlier, the long-range order in mean-
field theory is destroyed. The last two terms of Eq. (6)
imply the space and time gradients in � produce excess
charge and current densities at the edges:

	E ¼ e

2�
@x�; JE ¼ � e

2�
@t�: (9)

Because of Eq. (9) gapless spin wave excitations induce
charge and current density fluctuations with the following
power-law correlation functions:

�	=Jðx; tÞ / h@x=t�ð0; 0Þ@x=t�ðx; tÞi � � t2 � x2

ðx2 þ t2Þ2 :
Thus through the Goldstone-Wilczek mechanism gapless
charge excitations emerge.

The next question concerns the space-time vortices
(instantons) of the � field. Because of Eq. (9) a vorticity-m
instanton at the space-time location (x0, t0) will
cause

H
@Ddx�@��¼�ð2�=ÞH@Ddx�


��JE;�¼�ð2�=eÞR
Dd

2x@�JE;�¼2�m. Here D is an arbitrary disk contain-

ing (x0, t0) and JE;� ¼ ð	E; JEÞ is the edge 2-current. This
implies

@t	E þ @xJE ¼ �me�ðx� x0Þ�ðt� t0Þ; (10)

hence vortex instantons violate the edge charge conserva-
tion and, therefore, under usual circumstances should be
forbidden. Nonetheless, such instantons can occur through
the tunneling of electrons from one edge to the other [15]
[Fig. 2(b)]. Annihilating a right (left) moving electron
at the edge removes a charge e and spin 1=2ð�1=2Þ. Hence

c R=LðxÞ � exp

�
�i�ðxÞ=2þ i2�

Z 1

x
dy�ðyÞ

�
; (11)

where ½�ðxÞ;�ðyÞ� ¼ i�ðx� yÞ. The above result resem-
bles the usual 1D bosonization formula. This is not surpris-
ing since if we identify � with 2

ffiffiffiffi
�

p
�, Eq. (9) becomes the

bosonization expression for the charge and current den-
sities. It can be shown straightforwardly that for 4�K þ
ð4�KÞ�1 < 4 the interedge electron tunneling is a relevant
perturbation. Under such a condition, interedge electron
tunneling will gap the edge modes. However, if 4�K þ
ð4�KÞ�1 > 4 the interedge electron tunneling is irrelevant.
In that case the quantum spin Hall effect will survive
even when h, the sample width, is finite. Such stabilization
of the TI state for finite width sample is a pure interaction
effect.

In the interacting TI phase the system exhibits quantized
spin Hall conductance. This can be understood as follows.
In the presence of an electric field between the two edges,
a voltage difference V develops. This induces a difference
in @x� between the two edges (E1 and E2) ð@x�ÞE1

�
ð@x�ÞE2

¼ eV
2�K . Because the spin current is K@x�, this

gives JtotSz
¼ e

2�V; hence the spin Hall conductance is e
2�

which is the same as the free-electron value. As to the two
terminal conductance, it was pointed out in the context of
quantum wires that in the presence of translation invari-
ance interaction effect does not change the two terminal
conductance of a Luttinger liquid [16].
Finally, we consider the bulk transition between the AF

Mott insulator and the TI. For this discussion let us use the
periodic boundary condition, and consider the blue cut in
Fig. 1. First we approach the Mott insulator from the TI
side. In the presence of U its lowest-energy exciton is
magnetic [we do not use the word ‘‘triplet’’ because
SUð2Þ is broken by the spin-orbit hopping down to
Uð1Þ]. An example of the XY order parameter profile
associated with a magnetic exciton is shown in Fig. 4.
Upon increasing U the transition into the AF insulator is
triggered by the condensation of magnetic excitons. At the
transition the modulus and the phase coherence of the AF
XY order parameter develop simultaneously.
It is also instructive to approach the transition from the

AF Mott insulator side. In this case one naturally expects
the XY order to be destroyed by the condensation of
vortices [17]. Because the AF XY order parameter, the
triplet superconducting order parameter, and the quantum
spin Hall order parameter [which introduces the spin-
dependent hopping term in Eq. (1)] form a Wess-Zumino-
Witten five-tuplet for the free-graphene band structure
[18], one expects the following charge density-Skyrmion
density relation [12]

	 ¼ 1

2�

abcn

a@xn
b@yn

c: (12)

Here n1;2;3 are the components of the unit vector, with n1

associated with the quantum spin Hall order parameter
[the strength of the imaginary second neighbor hopping
in Eq. (1), which is fixed] and n2;3 associated with the
AF XY order parameters. The vortex charge is therefore
proportional to n1ð1� n21Þ. Since the XY order parameter

FIG. 4 (color online). An example of the XY order parameter
profile associated with a localized magnetic exciton. The size of
the open circles is proportional to the magnitude of the order
parameter.

PRL 107, 166806 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 OCTOBER 2011

166806-3



vanishes at the Mott ! TI transition, the condensed
vortices are charge neutral. Were it not true the vortex
condensed phase cannot be an insulator. In addition, since
the modulus of the XY order parameter vanishes at the
transition the vortices do not see a background magnetic
flux which frustrates the vortex condensation. This implies
the universality class of the transition is three-dimensional
XY, as claimed in Ref. [9].

In summary, despite the apparent differences, the power-
law correlated antiferromagneticXY edges do exhibit prop-
erties expected for the quantum spin Hall insulators. The
essential physics is the Goldstone-Wilczek mechanism;
through which the space-time gradients of the phase angle
of theXY order parameter are proportional to the charge and
current densities. The space-time vortices of the XY order
parameter violate edge charge conservation and, hence, are
prohibited in thermodynamic samples. This is the mecha-
nism through which the gapless charge and spin excitation
are protected at the edges. At the moment we do not have a
good picture for the ‘‘spin liquid dome’’ in Fig. 1. The main
findings of this Letter are summarized in the abstract.
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